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macroeconomic theory courses at the University of Pennsylvania. I am extremely grateful with them

for allowing me to use their class notes. All comments and corrections are welcome. All errors are

mine.



Contents

1 Models with no Uncertainty 1

1.1 The Neoclassical Growth Model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Social Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 The Log Utility Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Population Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Social Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.3 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Endogenous labor supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Exogenous Growth and Technological Change . . . . . . . . . . . . . . . . . 34

1.4.1 Solving for a Competitive Equilibrium . . . . . . . . . . . . . . . . . 37

1.4.2 Balanced Growth Path . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Numerical Methods I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.1 Example I - Computation of Steady State/Balanced Growth Path . 41

1.5.2 Example II - Computation of Equilibrium . . . . . . . . . . . . . . . 42

1.5.3 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5.4 Transitional Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.5.5 Approximating the Jacobian . . . . . . . . . . . . . . . . . . . . . . 51

1.5.6 Gauss-Seidel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6 Recursive Representation and Dynamic Programming . . . . . . . . . . . . 55

1.6.1 Social Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 55

1



1.6.2 Recursive Competitive Equilibrium . . . . . . . . . . . . . . . . . . . 58

1.6.3 Value Function Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.6.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.6.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.7 Growth Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 Endogenous Growth Models 74

2.1 The AK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 Human Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3 Externalities in Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.1 Social Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.2 Competitive Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 R&D Models - Romer (1990) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Models with Uncertainty 86

3.1 Representation of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Social Planner’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Competitive Equilibrium: Incomplete Markets . . . . . . . . . . . . . . . . . 91

3.4 Competitive Equilibrium: Complete Markets . . . . . . . . . . . . . . . . . 95

3.5 Arrow-Debreu Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.7 Recursive Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8.1 Value Function Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8.2 Discretization of Stochastic Variables . . . . . . . . . . . . . . . . . . 107

3.9 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9.2 Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.10 Real Business Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.11 Log-Linearizing around the Steady State . . . . . . . . . . . . . . . . . . . . 119

0



Chapter 1

Models with no Uncertainty

This section introduces the main tool in quantitative macroeconomic research during the

last decades: the neoclassical growth model. Even though the simplest version of this model

is not good enough to explain most macroeconomic phenomena, it is a benchmark upon

which most of the more complex models are built. Understanding the neoclassical growth

model will give the tools to study questions in different fields, such as monetary policy,

fiscal policy, unemployment, growth, and business cycles, among others.

The neoclassical growth model was a response to the Solow model, proposed in his

1957 paper, where he explained capital accumulation in the economy. In his model, Solow

assumed that the economy was composed of agents that saved an exogenous fraction of their

income, which was invested in capital. Even though this model has rich implications on

growth and convergence between economies that start from different initial conditions, the

assumption that agents save an exogenous and fixed fraction of their income is very strong.

The first version of the neoclassical growth model was proposed in the decade of 1960s by

David Cass and Tjalling Koopmans, where they assumed that, instead of saving a constant

fraction of their income, households solve an intertemporal utility maximization problem,

so savings and consumption are endogenous decisions that depend on prices. In particular,

the savings decision depends on the interest rate which, in equilibrium, is determined by

the aggregate level of capital in the economy, and by the discount factor, among other

parameters.

It turns out that most of the models currently used in research are extensions of this

model. Real business cycles and the short-term fluctuations in the economy are studied using
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the neoclassical growth model with uncertainty, where there are shocks to productivity that

drive fluctuations. Monetary economics use neokeynesian models, which are real business

cycle models with frictions, such as sticky prices and wages. Models that study inequality

and income distribution are composed of heterogeneous agents that interact in markets

in much the same way as the representative agent does in the neoclassical growth model.

Heterogeneity in these models comes in different forms: idiosyncratic risk faced by different

agents, life-cycle models in which agents of different cohorts interact, or ex-ante differences

such as initial wealth or ability. Similarly, models that study housing and financial markets

are extensions of the neoclassical growth model, where individuals have access to multiple

assets that differ in returns and risk.

But even thought the neoclassical growth model is such a useful tool, it turns out that by

itself it is not good enough to study most of the questions. In order to successfully explain

macroeconomic issues, certain extensions and assumptions must be made, depending on the

issue of study.

The following sections will present the neoclassical growth model and some of its exten-

sions, such as models with endogenous labor and exogenous technological growth. Every

section will first study the Pareto-optimal allocations of the specific model by solving the

social planner’s problem. Then, every section will define and characterize a descentralized

competitive equilibrium, where agents choose consumption, savings and labor by interact-

ing in markets where prices are fixed competitively in equilibrium. In applications where

there are no frictions, such as externalities, public goods, taxes, or private information, both

the social planner’s solution and the competitive equilibrium will coincide, as stated by the

welfare theorems. However, in models with such frictions the solution to both problems will

usually differ.

1.1 The Neoclassical Growth Model

In the economy there are two types of agents: households and firms. Households live for

T = ∞ periods. Every period they choose consumption, investment and labor. Firms use

labor and capital as inputs to produce the final good in the economy, which is devoted to

consumption and investment.

We assume there is a large number of households and firms and all of them are identical.
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We call this model a “representative agent” model because all households and firms take

the same decision in equilibrium. We denote the population size as Lt. For simplicity, in

this section we assume that there is a continuum of households of measure 1 and there is

no population growth. This means that Lt = 1 for every period t.

The assumption for there being a large number of agents is that in real life there are

millions of households and firms, and the effect of the decisions of a single agent have

negligible impact on macroeconomic aggregates. For instance, according to Inegi, in Mexico

there were 32 million households in 2015, so the actions of one household have negligible

effects on the overall economy. We will keep the assumption of identical households for now.

In later sections we will assume there are heterogeneous households.

For convention, we will denote aggregate variables with upper-case letters, and per-

capita variables with lower-case letters. For example, Ct and ct will denote aggregate and

per-capita consumption, respectively, Kt and kt are aggregate and per-capita capital, and

so on. In this section, given that we assume population size equal to 1 every period, it turns

out that ct = Ct, kt = Kt, . . ., so we will express the model in per-capita terms. In later

sections, where there is population growth, I will make the explicit the difference between

aggregate and per-capita variables.

Households maximize a lifetime utility function that depends on consumption in every

period of life {ct}∞t=0:

U(c0, c1, . . .) =
∞∑
t=0

βtu (ct)

where β is the discount factor and the period utility function u is strictly concave and

satisfies the Inada conditions:

1. u′(c) > 0

2. u′′(c) < 0

3. limc→0 u
′(c) =∞ (1.1)

4. limc→∞ u
′(c) = 0

Every period, each agent within the household has one unit of time that is devoted

inelastically to labor. In addition to time, households start their lives with an amount of

capital k0, which is devoted to production.

Total output in the economy yt is produced by firms that hire labor lt and capital kt in
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competitive markets as inputs to produce according to a neoclassical production function

F , such that yt = F (kt, lt). We assume that F satisfies the following properties: 1) F is

homogeneous of degree 1 -has constant returns to scale-, such that F (λkt, λlt) = λF (kt, lt)

for every λ; 2) F is concave, such that Fk, Fl > 0, Fkk, Fll < 0, and Fkl > 0; and 3) F

satisfies the Inada conditions:

1. limk→0 Fk(k, l) =∞

2. liml→0 Fl(k, l) =∞

3. limk→∞ Fk(k, l) = 0 (1.2)

4. liml→∞ Fl(k, l) = 0

Final good production yt in the economy is devoted to consumption ct and investment

it, so the aggregate resource constraint is given by yt = ct + it.

Given an investment choice it, capital in the economy evolves according to:

kt+1 = (1− δ)kt + it

where δ is the depreciation rate of capital. This equation states that the amount of capital

at t+ 1 is equal to the undepreciated capital at t plus the total investments made.

1.1.1 Social Planner’s Problem

The social planner’s problem, whose solution yields the set of Pareto-optimal allocations in

this economy, is given by:

max
ct,it,kt+1

∞∑
t=0

βtu (ct) s.t.

∀t ∈ {0, 1, . . .} : ct + it = F (kt, 1) (1.3)

kt+1 = (1− δ)kt + it (1.4)

ct, kt+1 ≥ 0, k0 given (1.5)

The social planner maximizes the utility of the representative agent in the economy

subject to the resource constraint in the economy (1.3), the capital evolution equation

(1.4), non-negativity constraints, and the initial level of capital in the economy k0 given

(1.5). Combining the first two constraints, yields a simplified version of the social planner’s

problem:
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max
ct,it,kt+1

∞∑
t=0

βtu (ct) s.t. (1.6)

∀t ∈ {0, 1, . . .} : ct + kt+1 = (1− δ)kt + F (kt, 1)

ct, kt+1 ≥ 0, k0 given

The constraint that the social planner faces is such that the total amount of the final

good produced F (kt, 1) plus the undepreciated capital (1− δ)kt should be either consumed

ct or allocated to capital for production next period kt+1.

The social planner’s problem (1.6) is a maximization problem with restrictions, so we

can solve it by setting up the corresponding lagrangean:

L =
∞∑
t=0

βtu (ct) +
∞∑
t=0

λt ((1− δ)kt + F (kt, 1)− ct − kt+1)

Note that there is one resource constraint for every period t, so we assign a lagrange multi-

plier λt for every such restriction. The multiplier λt is called the shadow price of capital,

and represents the marginal value of capital or, equivalently, the additional utility that

loosening the resource constraint by one unit would generate to the household. In this la-

greangean, we are ignoring the non-negativity constraints ct, kt+1 ≥ 0 because it will never

be optimal for the social planner to assign consumption or capital equal to zero in equilib-

rium, given the Inada conditions on the utility and production functions, given by conditions

(1.1) and (1.2). In equilibrium, if ct = 0, given that the marginal utility of consumption is

infinite, increasing consumption by a small amount will generate a large increase in utility

so it is optimal for the social planner to assign ct > 0. Similarly, in equilibrium kt+1 > 0,

given that if kt+1 = 0 the marginal utility of increasing capital is so large that the planner

will find it optimal to set kt+1 > 0.

To characterize the equilibrium, the first order conditions are:

[ct] : βtu′(ct)− λt = 0 (1.7)

[kt+1] : −λt + λt+1 (1− δ + Fk(kt+1, 1)) = 0 (1.8)

[λt] : (1− δ)kt + F (kt, 1)− ct − kt+1 = 0 (1.9)
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By rearranging equations (1.7) and (1.8), we obtain the following optimality condition for

the social planner’s problem:

u′(ct) = (1− δ + Fk(kt+1, 1))βu′(ct+1) (1.10)

This condition is commonly known as the Euler equation or intertemporal optimality

condition, as it illustrates the inter-temporal trade-off faced by households: allocating

one more unit of consumption today ct yields additional utility u′(ct), while allocating an

additional unit of capital kt+1 yields additional utility in present value given by (1 − δ +

Fk(kt+1, 1))βu′(ct+1). The individual will choose every period t the amount of consumption

ct and capital kt+1 that yield exactly the same marginal utility. This equation can be

rearranged in the following way:

u′(ct)

βu′(ct+1)︸ ︷︷ ︸
MRS

= (1− δ + Fk(kt+1, 1))︸ ︷︷ ︸
MRT

(1.11)

The left-hand side of equation (1.11) represents the marginal rate of subsitution of house-

holds, given the utility function u, and the right-hand side represents the marginal rate of

transformation, given the production function F . The optimal choice equates the marginal

rate of substitution and the marginal rate of transformation.

Given that the utility function is strictly concave and the constraint set is strictly con-

vex, the first order conditions of the planner’s problem are necessary conditions for an

optimal solution. However, for these to be sufficient conditions we need to add the follow-

ing transversality condition on kt+1:

lim
t→∞

λtkt+1 = 0 (1.12)

Stokey et al. (1989) show that the following are necessary and sufficient conditions for

the allocations {ct, kt+1}∞t=0 to be optimal and solve the social planner’s problem:
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Euler equation:
u′(ct)

βu′(ct+1)
= (1− δ + Fk(kt+1, 1)), ∀t ≥ 0 (1.13)

Resource constraint: ct + kt+1 = (1− δ)kt + F (kt, 1), ∀t ≥ 0 (1.14)

Transversality condition: lim
t→∞

βtu′(ct)kt+1 = 0 (1.15)

Initial condition: k0 given (1.16)

Conditions (1.13) and (1.14) come directly from the first order conditions of the social

planner’s problem. Note that these equations for all t constitute a set of difference equations

in kt, kt+1 and kt+2. For this system of difference equations to have a solution, we need two

“boundary conditions”. The transversality and initial conditions (1.15) and (1.16) play the

role of these boundary conditions. A detailed derivation of the transversality condition and

the proof for them to be necessary and sufficient conditions for an optimum are explained

in Stokey et al. (1989).

Conditions (1.13)-(1.16) fully characterize the set of Pareto-optimal allocations in the

economy. This means that if the allocations {ct, kt+1}∞t=0 are given to households in the

economy, there is no way to improve a single household without affecting at least another

one.

1.1.2 Competitive Equilibrium

This section characterizes a competitive equilibrium in this environment, where households

and firms are left to interact in competitive markets and prices are fixed such that markets

clear. The environment is the same as in last section, although here households have access

to risk-free financial assets to save in addition to investments in capital.

Definition of Equilibrium

Every period, each agent within the household has one unit of time that is devoted inelas-

tically to labor in exchange for a wage wt per unit of time. In addition to labor income,

households own capital in the economy kt, which they rent to firms in exchange for a rental

rate Rt per unit of capital. Every period the household can save in risk-free bonds at, with
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net returns given by the real interest rate rt. Finally, households own firms in the economy,

so every period they receive the profits generated by the firm πt. This means that every

period the household faces the following budget constraint:

ct + it + at+1 = wt +Rtkt + (1 + rt)at + πt

where it denotes investment, wt is the wage per unit of labor, Rt is the rental price of

capital, rt is the real interest rate on risk-free bonds πt are the profits of the firm. Note that

in this budget constraint the price of the final good is normalized to one or, equivalently,

the budget constraint is expressed in terms of the final good. In particular, wages wt and

capital rents rt are in terms of the final good.

As in last section, investment is denoted by it, such that capital evolves according to:

kt+1 = (1− δ)kt + it

where δ is the depreciation rate of capital. The amount of capital at t + 1 is equal to the

undepreciated capital at t plus the total investments made by the household.

The household’s problem is given by:

max
ct,kt+1,it
t≥0

∞∑
t=0

βtu (ct) s.t. (1.17)

ct + it + at+1 = wt +Rtkt + (1 + rt)at + πt (1.18)

kt+1 = (1− δ)kt + it (1.19)

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 ≥ 0 (1.20)

ct, kt+1 ≥ 0, k0 given, a0 = 0 given (1.21)

Note that there is one budget constraint (1.18) and capital evolution constraint (1.19) for

every period t. The constraint given by equation (1.20) is called a No-Ponzi condition,

and ensures that individuals do not get accumulate increasingly large levels of debt in the

long run. Without this condition, individuals could roll-over their debt period after period

by borrowing a larger amount every time. This condition rules out those cases.

Given the production function F , the firm chooses the amount of capital and labor to
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hire every period to maximize profits:

πt = max
kt,lt

yt − wtlt −Rtkt (1.22)

= max
kt,lt

F (kt, lt)− wtlt −Rtkt

Definition 1 (Competitive Equilibrium). A competitive equilibrium are allocations for the

household {ct, kst+1, it, at+1}∞t=0, allocations for the firm {kdt , lt}∞t=0, and prices {wt, Rt, rt}∞t=0

such that:

1. Given k0 and prices {wt, Rt, rt}∞t=0, the allocations {ct, kst+1, it, at+1}∞t=0 solve the op-

timization problem of the household, described by (1.17).

2. At every t ∈ {0, 1, . . .}, given prices wt, Rt, rt, the allocations kdt , lt solve the optimiza-

tion problem of the firm, described by (1.22).

3. Markets clear for all t ≥ 0:

(a) Goods: ct + it = F (kdt , lt)

(b) Labor: lt = 1

(c) Capital: kdt = kst

(d) Risk-free bonds: at = 0

The market clearing condition for labor states that, in equilibrium, total demand for

labor by the firms should be equal to one. This is because we assumed that total population

size is equal to one and households supply labor inelastically. Later sections will assume that

there is endogenous labor supply, which will change this market clearing condition. The last

market clearing condition states that, in equilibrium, there is zero net supply for risk-free

bonds. This is because we have assumed that in the economy there is a representative agent.

Given that in equilibrium the total amount saved must equal total amount borrowed, and

all agents are equal to each other, this can only happen if the representative household has

no savings. If there were more than one agent in the economy (as will be the case in Section

??), it could be the case that, in equilibrium, ait+1 > 0 and ajt+1 < 0 for agents i 6= j, so

that agent i is a saver, while agent j is a borrower.
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To solve for an equilibrium, it suffices to solve problems (1.17) and (1.22) and set prices

{wt, Rt, rt}∞t=0 that clear the markets in the economy. Next subsections solve the household’s

and firm’s problem.

Household’s Problem

Let’s start by solving the problem of the household. First of all, notice that, instead of

solving problem (1.17), we can combine the first two restrictions such that the budget

constraint becomes:

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at + πt

This means that the household’s problem can be expressed as:

max
ct,kt+1

∞∑
t=0

βtu (ct) s.t. (1.23)

∀t ∈ {0, 1, . . .} : ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at + πt

ct, kt+1 ≥ 0, k0 given, a0 = 0 given

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 ≥ 0

In this problem, we got rid of investment it by combining the restrictions, so the households

only chooses consumption ct, capital kt+1 and risk-free bonds at+1. Once we solve for

the equilibrium, the sequence for investment can be recovered using the capital evolution

equation:

it = kt+1 − (1− δ)kt

As with the social planner’s problem, given the Inada conditions for the utility and pro-

duction functions, in equilibrium the individual will never choose to optimally consume

ct = 0 or set capital kt+1 = 0. Given that the marginal utility of consumption is infinite

when ct = 0, it is always optimal to consume a positive amount. On the other hand, if

the household sets kt+1 = 0, the Inada condition on F implies that the real interest rate

rt+1 =∞. Therefore, it is optimal for the household to choose a positive amount of capital

kt+1. This means that we can safely ignore the non-negativity constraints when solving the
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problem. Similarly, we can ignore the No-Ponzi condition for now.

The associated lagrangean is:

L =
∞∑
t=0

βtu (ct) +
∞∑
t=0

λt ((1− δ)kt + wt +Rtkt + (1 + rt)at + πt − ct − kt+1 − at+1)

There is a lagrange multiplier λt for the budget constraint at each period, which represents

the shadow price of one unit of wealth, and is interpreted as the additional utility that

would bring to the individual having an additional unit of income in equilibrium. The first

order conditions for this problem are:

[ct] : βtu′(ct)− λt = 0 (1.24)

[kt+1] : −λt + λt+1 (1− δ +Rt+1) = 0 (1.25)

[at+1] : −λt + λt+1 (1 + rt+1) = 0 (1.26)

[λt] : (1− δ)kt + wt +Rtkt + (1 + rt)at + πt − ct − kt+1 − at+1 = 0 (1.27)

To obtain equations (1.25) and (1.26), note that kt+1 and at+1 appear in two consecutive

budget constraints: the one associated with period t and the one for period t+ 1. Equation

(1.27) is simply the period t budget constraint. Combining the first three conditions yields:

βtu′(ct) = (1− δ +Rt+1)βt+1u′(ct+1) (1.28)

βtu′(ct) = (1 + rt+1)βt+1u′(ct+1) (1.29)

Equations (1.28) and (1.29) imply that, in equilibrium, Rt − δ = rt, which is a non-

arbitrage condition: the returns of capital must equal returns of risk-free bonds in

equilibrium. In equilibrium, the household is indifferent between investing in capital or

in risk-free bonds. This happens because if, for example, the returns to bonds were larger

than returns to capital, households would choose to invest only in bonds and nothing in

capital. The Inada condition for capital implies that Rt = ∞, so households have incen-

tives to increase capital until both returns to capital and bonds are equal to each other.
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Rearranging (1.28):

u′(ct)

βu′(ct+1)︸ ︷︷ ︸
MRS

= (1− δ +Rt+1)︸ ︷︷ ︸
MRT

(1.30)

This equation is commonly known as the Euler equation or the intertemporal opti-

mality condition of the household, and has the same interpretation as the Euler condition

for the social planner.

Given that the utility function is strictly concave and the constraint set is strictly convex,

the first order conditions for the household’s problem are necessary conditions for an optimal

solution. However, for these to be sufficient conditions we need to add the following two

transversality conditions on kt and at:

lim
t→∞

λtkt+1 = 0 (1.31)

lim
t→∞

λtat+1 = 0 (1.32)

As for the social planner’s problem, it can be shown that equations (1.27), (1.28), (1.29),

(1.31) and (1.32) are necessary and sufficient conditions for an optimum, so any allocation

that satisfies them constitutes a solution to the household’s problem.

This means that, given a sequence of prices {wt, Rt, rt}∞t=0, the allocations {ct, kt+1, at+1}∞t=0

that satisfy the following equations characterize the optimal solution for the household:
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Euler eq.: βtu′(ct) = (1− δ +Rt+1)βt+1u′(ct+1), ∀t ≥ 0 (1.33)

βtu′(ct) = (1 + rt+1)βt+1u′(ct+1), ∀t ≥ 0 (1.34)

Bud. const.: ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at + πt, (1.35)

∀t ≥ 0

Transv. cond.: lim
t→∞

βtu′(ct)kt+1 = 0 (1.36)

lim
t→∞

βtu′(ct)at+1 = 0 (1.37)

Init. cond.: k0, a0 given (1.38)

Firm’s Problem

Now, let’s solve the firm’s problem. Every period t, the problem of the firm is:

max
kt,lt

F (kt, lt)− wtlt −Rtkt

Note that the firm’s problem is completely static. This is because we are assuming that

the firm does not own the capital, so it does not have to make any capital accumulation

decisions. The dynamic, or inter-temporal, decision is completely made by the household.

Extensions of this model that focus on studying corporate finance issues assume that firms

have inter-temporal decisions, such as long term debt, equity issuance, and investment

decisions.

Given the problem of the firm in the current version of the model, the first order con-

ditions yield:

wt = Fl(kt, lt) (1.39)

Rt = Fk(kt, lt) (1.40)

Given these conditions, in equilibrium firms make zero profits, so πt = 0. This is a conse-
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quence of the constant returns to scale assumption, which states that, for every λ:

F (λkt, λlt) = λF (kt, lt)

Differentiate the above equation with respect to λ:

ktFk(λkt, λlt) + ltFl(λkt, λlt) = F (kt, lt)

This holds, in particular, for λ = 1, which means that:

F (kt, lt) = kt Fk(kt, lt)︸ ︷︷ ︸
Rt

+lt Fl(kt, lt)︸ ︷︷ ︸
wt

= wtlt +Rtkt (1.41)

So πt = F (kt, lt) − wtlt − Rtkt = 0. In this way, the equilibrium is fully characterized by

prices {wt, Rt, rt}∞t=0, and allocations {ct, kst+1, it, at+1}∞t=0 for the household and {kdt , lt}∞t=0

for the firm, that satisfy equations (1.33)-(1.38) of the household, (1.39), (1.40), and (1.41)

of the firm, and the market clearing conditions in Definition 4.

Welfare Theorems

Note the similarities between the optimality conditions of the social planner’s problem, and

the ones associated to the household’s problem. It is easy to prove that the allocations of

both problems coincide, by noting that, in the competitive equilibrium, the solution to the

firm’s problem yields Rt = Fk(kt, 1), given by equation (1.40), and the fact that lt = 1,

according to the labor market clearing condition. Similarly, using the solution to the firm’s

problem and the fact that πt = 0, as shown by equation (1.41), the equivalence between the

household’s budget constraint (1.35) and the resource constraint (1.14) can be shown.

It is not surprising that the solutions to the social planner’s problem and the competitive

equilibrium are the same. This is because in this environment there are no frictions, such

as externalities, public goods, taxes, or information problems, so the two welfare theorems

hold. For completeness, I state the two welfare theorems:

Theorem 1 (First Welfare Theorem). Let {ct, kt+1, it, at+1, lt}∞t=0 be a competitive equilib-

rium allocation. Then {ct, kt+1, it, at+1, lt}∞t=0 is Pareto efficient.

This theorem states that, whenever we solve for a competitive equilibrium, the resulting

allocations are Pareto efficient, which means that those allocations also solve the social
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planner’s problem. In this way, whenever we want to find Pareto-optimal allocations, we

can solve either the social planner’s problem or the competitive equilibrium.

Theorem 2 (Second Welfare Theorem). Let {ct, kt+1, it, at+1, lt}∞t=0 be a Pareto-optimal al-

location. Then, there exist prices {wt, Rt, rt}∞t=0 such that {ct, kt+1, it, at+1, lt, wt, Rt, rt}∞t=0

constitute a competitive equilibrium.

This means that, whenever we want to solve for an equilibrium, we can explicitly solve

the household’s and firm’s problems as in Definition 4, or we can solve the social planner’s

problem and construct a sequence of prices accordingly.

1.1.3 Steady state

A steady state in this economy is a competitive equilibrium (Definition 4) in which all

variables per capita remain constant across time. Given that population size is constant

and is equal to one, aggregate per capita variables are equal, in equilibrium, to the individual

choices of households. In a steady state:

ct = ct+1 = ct+2 = . . . = c∗

kt = kt+1 = kt+2 = . . . = k∗

yt = yt+1 = yt+2 = . . . = y∗

...

Having solved for the equilibrium, we now can characterize how a steady state would

look like. Take the Euler equation in the social planner’s problem (1.10), and set all variables

to their steady state values:

u′(c∗)

βu′(c∗)
= (1− δ + Fk(k

∗, 1)) ⇐⇒ 1

β
= (1− δ + Fk(k

∗, 1))

⇐⇒ Fk(k
∗, 1) =

1

β
− 1 + δ (1.42)

Note that in this equation everything is constant except for capital, so capital in steady

state k∗ is pinned down by (1.42). Moreover, if the production function F is strictly concave,

it can be shown that this steady state is unique. This means that there is a unique k∗
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which solves equation (1.42). Once the capital in steady state k∗ is characterized, it is

straightforward to find steady state values of all the other variables in the model. For

production and consumption we can use the production function and resource constraint:

y∗ = F (k∗, 1) (1.43)

c∗ = (1− δ)k∗ + F (k∗, 1)− k∗ = F (k∗, 1)− δk∗ (1.44)

Similarly, prices can be computed using the solution to the firm’s problem:

w∗ = Fl(k
∗, 1) (1.45)

R∗ = Fk(k
∗, 1) (1.46)

r∗ = R∗ − δ (1.47)

Note that in this environment there is no growth on per capita variables in steady state.

This means that this model cannot successfully explain long-term growth of countries.

Further sections will expand the model such that the economy can experience growth in the

long run.

1.1.4 The Log Utility Case

There are few cases in which these models can be solved analytically with a closed-form

solution. This section presents one such particular case. In most other cases, it is not

possible to derive a closed form solution for equilibria and the only option is to solve the

model numerically. Section 1.5 is an introduction to solving these models with a computer.

In this example, let the utility function be given by u(c) = log(c) and the aggregate

production function be F (k, l) = kαl1−α. Assume that there is full depreciation, so δ = 1.

Using equation (1.33), the intertemporal optimality condition is given by:

ct+1

βct
= Rt+1

This implies that consumption over time behaves according to:

ct+1 = Rt+1βct (1.48)
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Recursively plugging in equation (1.48) we obtain an expression for period t consumption:

c1 = R1βc0

c2 = R2βc1 = R1 ·R2 · β2c0

. . .

ct =
(
βtΠt

j=1Rj
)
c0 (1.49)

If we take the budget constraints in equation (1.35) for periods t, t+1, t+2 . . . and recursively

combine them:

ct + kt+1 = wt +Rtkt

ct+1 + kt+2 = wt+1 +Rt+1kt+1

ct+2 + kt+3 = wt+2 +Rt+2kt+2

. . .

We obtain:

kt+1 =
1

Rt+1
(ct+1 + kt+2 − wt+1)

kt+2 =
1

Rt+2
(ct+2 + kt+3 − wt+2)

. . .
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Then:

ct +
1

Rt+1
(ct+1 + kt+2 − wt+1) = wt + rtkt

⇐⇒ ct +
ct+1

Rt+1
+
kt+2

Rt+1
= wt +

wt+1

Rt+1
+ rtkt

⇐⇒ ct +
ct+1

Rt+1
+

(ct+2 + kt+3 − wt+2)

Rt+1 ·Rt+2
= wt +

wt+1

Rt+1
+ rtkt

⇐⇒ ct +
ct+1

Rt+1
+

ct+2

Rt+1 ·Rt+2
+

kt+3

Rt+1 ·Rt+2
= wt +

wt+1

Rt+1
+

wt+2

Rt+1 ·Rt+2
+ rtkt

⇐⇒ . . . (Summing up to period t+ s)

⇐⇒
s∑
l=0

ct+l

Πl
j=0Rt+j

+
kt+s+1

Πt+s
j=tRj

=

s∑
l=0

wt+l

Πl
j=0Rt+j

+ kt

⇐⇒ . . . (Taking limit as s→∞)

⇐⇒
∞∑
l=0

ct+l

Πl
j=0Rt+j

+ lim
s→∞

(
1

Πt+s
j=tRj

)
kt+s+1 =

∞∑
l=0

wt+l

Πl
j=0Rt+j

+ kt

⇐⇒ . . . (By transversality condition)

⇐⇒
∞∑
l=0

ct+l

Πl
j=0Rt+j︸ ︷︷ ︸

Lifetime consumption

=

∞∑
l=0

wt+l

Πl
j=0Rt+j︸ ︷︷ ︸

Lifetime labor income

+ kt

The transversality condition is used because:

lim
s→∞

λt+skt+s+1 = lim
s→∞

βt+su′(ct+s)kt+s+1

= lim
s→∞

βt+s

ct+s
kt+s+1

= lim
s→∞

βt+s

βsΠt+s
j=tRjct

kt+s+1

=

(
βt

ct

)
· lim
s→∞

(
1

Πt+s
j=tRj

)
kt+s+1 = 0
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Plugging in the expression for consumption at period t given by (1.49):

∞∑
l=0

ct+l

Πl
j=0Rt+j

=
∞∑
l=0

βlΠl
j=1Rt+jct

Πl
j=0Rt+j

=
(1− β)

Rt
ct =

∞∑
l=0

wt+l

Πl
j=0Rt+j

+ kt

⇐⇒ ct =
1

(1− β)

( ∞∑
l=0

wt+l

Πl
j=1Rt+j

+Rtkt

)

In particular:

c0 =
1

(1− β)

( ∞∑
t=0

wt
Πt
j=1Rj

+R0k0

)
(1.50)

ct =
1

(1− β)

( ∞∑
t=0

wt
Πt
j=1Rj

+R0k0

)
(1.51)

This is Milton Friedman’s (1957) Permanent Income hypothesis. In this model, agents

consume every period a fraction of total lifetime income. Instead of making the consumption

decision based on present income, they choose how much to consume based on their lifetime

income. This means that, in this model, additional income in any single period of life

increases consumption at every other period. Note that equation (1.51) illustrates the

path of consumption over life. Recall that the discount factor of households is given by a

parameter ρ, where:

β =
1

1 + ρ

Also, β = 1/Rj if and only if ρ = Rj − 1 = rj . This means that the path of consumption of

households is constant if and only if the discount rate of households equals the discount rate

of the markets. If β > 1/Rj = 1/(1 + rj), the household is more patient than the market,

so consumption follows an increasing path over life. If, instead, β < 1/Rj = 1/(1 + rj),

households are more impatient than the market, so consumption will decrease over time.

Using the Euler equation (1.48) and the fact that Rt = Fk(kt, 1), we can see that for a

19



steady state to exist, the following condition must hold:

c∗ = Fk(k
∗, 1)βc∗ ⇐⇒ 1 = Fk(k

∗, 1) · β

With the Cobb-Douglas functional form:

Fk(k, l) = α

(
k

l

)α−1

So the steady state level of capital is given by:

αk∗α−1 =
1

β
⇐⇒ k∗ = (αβ)

1
1−α

The other steady state variables are:

yt = F (kt, 1) = kα =⇒ y∗ = (αβ)
α

1−α

R∗ = α

(
1

αβ

)

w∗ = (1− α) (αβ)
α

1−α

c∗ = w∗ + r∗ + k∗ − k∗ = w∗ +R∗
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1.2 Population Growth

So far, the model presented does not have long-run growth. When the economy reaches

its steady state, all aggregate variables stay constant and do not grow. However, this is

not what we observe in reality. Countries that are close to their steady state, such as most

developed economies, experience growth every year. This section is a first step towards

modelling an economy with long-run growth.

The model setup is exactly the same as before, with the only difference that now every

household has Lt members, and family size grows at a rate n, such that:

Lt+1 = (1 + n)Lt

As in last section, we will denote per-capita variables in lower case, and absolute variables

in upper case, such that:

ct =
Ct
Lt
, it =

It
Lt
, kt =

Kt

Lt
, yt =

Yt
Lt
, . . .

Now, households maximize a lifetime utility function that depends on per-capita con-

sumption rather than on aggregate consumption:

∞∑
t=0

βtu

(
Ct
Lt

)
=
∞∑
t=0

βtu (ct)

1.2.1 Social Planner’s Problem

The social planner’s problem is given by:

max
Ct,Kt+1

∞∑
t=0

βtu

(
Ct
Lt

)
s.t.

∀t ∈ {0, 1, . . .} : Ct +Kt+1 = (1− δ)Kt + F (Kt, Lt)

Ct,Kt+1 ≥ 0, K0 given
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By the constant-returns-to-scale property of the production function F , note that:

F (Kt, Lt) = Lt · F
(
Kt

Lt
, 1

)
= LtF (kt, 1)

The resource constraint can be re-expressed in per-capita terms by dividing both sides by

Lt:

Ct
Lt

+
Kt+1

Lt
= (1− δ)Kt

Lt
+ F

(
Kt

Lt
, 1

)

⇔ Ct
Lt

+
Lt+1

Lt
· Kt+1

Lt+1
= (1− δ)Kt

Lt
+ F

(
Kt

Lt
, 1

)
⇔ ct + (1 + n)kt+1 = (1− δ)kt + F (kt, 1)

The social planner’s problem can be rewritten in per-capita terms as:

max
ct,kt+1

∞∑
t=0

βtu (ct) s.t. (1.52)

∀t ∈ {0, 1, . . .} : ct + (1 + n)kt+1 = (1− δ)kt + F (kt, 1)

ct, kt+1 ≥ 0, k0 given

The constraint that the social planner faces is such that per-capita output produced F (kt, 1)

plus the undepreciated capital (1 − δ)kt is either consumed ct or allocated to capital for

production next period (1+n)kt+1. The term (1+n) takes into account that the population

will grow from t to t+ 1 at a rate n, so if the economy wants to have kt+1 per-capita units

of capital per capita in t+ 1, it has to invest (1 + n)kt+1 at t.

The lagrangean associated to problem (1.52) is:

L =

∞∑
t=0

βtu (ct) +

∞∑
t=0

λt ((1− δ)kt + F (kt, 1)− ct − (1 + n)kt+1)

Again, we are ignoring the non-negativity constraints because the Inada conditions ensure

that the social planner will choose positive consumption and capital per capita in equilib-
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rium. The first order conditions are:

[ct] : βtu′(ct)− λt = 0

[kt+1] : −λt(1 + n) + λt+1 (1− δ + Fk(kt, 1)) = 0

[λt] : (1− δ)kt + F (kt, 1)− ct − (1 + n)kt+1 = 0

By rearranging the conditions associated to ct and kt+1, we obtain the following optimality

condition:

u′(ct)

βu′(ct+1)
=

(1− δ + Fk(kt+1, 1))

(1 + n)
(1.53)

This is the Euler condition for the social planner’s problem. The right-hand side differs

from the Euler equation of the social planner without population growth because now the

marginal product of capital kt+1 chosen at t has to be split between a larger population at t+

1. The solution to the social planner’s problem is characterized by allocations {ct, kt+1}∞t=0

that satisfy the following necessary and sufficient conditions for an optimum:

Euler eq.:
u′(ct)

βu′(ct+1)
=

(1− δ + Fk(kt+1, 1))

(1 + n)
, ∀t ≥ 0 (1.54)

Resource constraint: ct + (1 + n)kt+1 = (1− δ)kt + F (kt, 1), ∀t ≥ 0 (1.55)

Transv. cond.: lim
t→∞

βtu′(ct)kt+1 = 0 (1.56)

Initial condition: k0 given (1.57)

Note the similarity between conditions (1.54)-(1.57) and (1.13)-(1.16). In both cases, vari-

ables are expressed in per-capita terms. However, recall that in Section 1.1 there was no

population growth and population size was normalized to 1, so the optimality conditions

did not depend on n. In this section, there is population growth, so the Euler equation

depends on the growth rate n. However, if we set population growth n = 0, we are back to

the original optimality conditions.
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1.2.2 Competitive Equilibrium

As in Section 1.1, we assume there is inelastic labor supply so every period each agent

within the household supplies one unit of time to labor. The only difference is that now

households have Lt agents, all of which supply labor, so total labor income equals wtLt.

Households can invest in capital Kt, which has returns equal to Rt, and in risk-free bonds

At that have net returns equal to the interest rate rt. The households are the owners of

the firms so every period they receive profits equal to Πt. However, as shown in equation

(1.41), profits are equal to zero in equilibrium whenever the production function satisfies

the constant-returns-to-scale assumption and the firm operates in perfect competition. This

will be the case throughout most of these lecture notes, so we will omit henceforth the profits

Πt from the households’ problem. Every period, the household faces the following budget

constraint:

Ct + It +At+1 = wtLt +RtKt + (1 + rt)At

Combining the budget constraint with the capital evolution equation, Kt+1 = (1−δ)Kt+It,

and expressing the variables in per-capita terms:

Ct
Lt

+
Kt+1

Lt
+
At+1

Lt
= (1− δ)Kt

Lt
+ wt +Rt

Kt

Lt
+ (1 + rt)

At
Lt

⇐⇒ Ct
Lt

+
Lt+1

Lt
· Kt+1

Lt+1
+
Lt+1

Lt
· At+1

Lt+1
= (1− δ)Kt

Lt
+ wt +Rt

Kt

Lt
+ (1 + rt)

At
Lt

⇐⇒ ct + (1 + n)kt+1 + (1 + n)at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

The problem of the household can be conveniently expressed in per-capita terms:

max
ct,kt+1,at+1

∞∑
t=0

βtu (ct) s.t. (1.58)

∀t ∈ {0, 1, . . .} : ct + (1 + n)kt+1 + (1 + n)at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

ct, kt+1 ≥ 0, k0 given, a0 = 0 given

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 ≥ 0

24



Given the production function, the firm chooses the amount of capital Kt and labor Lt to

hire every period to maximize profits:

Πt = max
Kt,Lt

F (Kt, Lt)− wtLt −Rtkt (1.59)

Note that the household maximizes consumption per-capita, so it is more convenient to

express its problem in per-capita terms. In contrast, the firm’s problem cannot be stated

in per-capita terms, because the firm chooses absolute levels of capital and labor, and not

only the ratio of capital per-worker. As will be seen later in this section, to compute the

steady state, we will re-write the optimality conditions of the firm in per-capita terms.

The following is the definition of a competitive equilibrium in this environment, where

there is population growth.

Definition 2 (Competitive Equilibrium). A competitive equilibrium are allocations for the

household {ct, kst+1, it, at+1}∞t=0, allocations for the firm {Kd
t , L

d
t }∞t=0, and prices {wt, Rt, rt}∞t=0

such that:

1. Given k0, a0, and prices {wt, Rt, rt}∞t=0, the allocations {ct, kst+1, it, at+1}∞t=0 solve the

optimization problem of the household described by (1.58).

2. At every t ∈ {0, 1, . . .}, given prices wt, Rt, rt, the allocations Kd
t , L

d
t firms solve the

optimization problem of the firm, described by (1.59)

3. Markets clear for all t ≥ 0:

(a) Goods: ct + it = yt

(b) Labor: Ldt = Lt

(c) Capital: Kd
t = Ks

t

(d) Risk-free bonds: at = 0

Solving for the equilibrium

The lagrangean associated to the household’s problem (1.58) is:

L =

∞∑
t=0

βtu (ct)+

∞∑
t=0

λt ((1− δ)kt + wt +Rtkt + (1 + rt)at − ct − (1 + n)kt+1 − (1 + n)at+1)
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The first order conditions for this problem are:

[ct] : βtu′(ct)− λt = 0 (1.60)

[kt+1] : −λt(1 + n) + λt+1 (1− δ +Rt+1) = 0 (1.61)

[at+1] : −λt(1 + n) + λt+1 (1 + rt+1) = 0 (1.62)

[λt] : (1− δ)kt + wt +Rtkt + (1 + rt)at − ct − (1 + n)kt+1 − (1 + n)at+1 = 0 (1.63)

Combining equations (1.61) and (1.62), we obtain a non-arbitrage condition analogous to

that of Section 1.1:

Rt − δ = rt

Similarly, the Euler equation is:

u′(ct)

βu′(ct+1)
=

(1− δ +Rt+1)

(1 + n)
(1.64)

The following are sufficient and necessary conditions for an allocation to solve the house-

hold’s problem:

Euler eq.:
u′(ct)

βu′(ct+1)
=

(1− δ +Rt+1)

(1 + n)
, ∀t ≥ 0 (1.65)

u′(ct)

βu′(ct+1)
=

(1 + rt+1)

(1 + n)
, ∀t ≥ 0 (1.66)

Bud. const.: ct + (1 + n)kt+1 + (1 + n)at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at (1.67)

∀t ≥ 0

Transv. cond.: lim
t→∞

βtu′(ct)kt+1 = 0 (1.68)

lim
t→∞

βtu′(ct)at+1 = 0 (1.69)

Init. cond.: k0, a0 given (1.70)

For the firm’s problem, we must be careful in the following: as opposed to the household,

which chooses per-capita variables, the firms choose absolute capital and labor. For this
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reason, we must solve the firms’ problem in absolute terms, and then express everything in

per-capita terms.

The first order conditions for the firm yield:

wt = Fl(Kt, Lt)

Rt = Fk(Kt, Lt)

Now, we would like to express the firm’s optimality conditions in terms of per-capita vari-

ables. In this way, the whole model would be expressed in per-capita terms, so we can easily

solve for the equilibrium. For this, note that, given that the production function F satisfies

the constant-returns-to-scale condition, we can rewrite F (K,L) as:

F (K,L) = F (K · L
L
,L) = F (L · K

L
,L) = F (L · k, L) = L · F (k, 1)

This means that:

FK(K,L) = L · Fk
(
K

L
, 1

)
· 1

L︸ ︷︷ ︸
Chain rule

= Fk(k, 1) (1.71)

Fl(K,L) = F (k, 1)+L·Fk
(
K

L
, 1

)
·
(
−K
L2

)
︸ ︷︷ ︸

Chain rule

= F (k, 1)−Fk
(
K

L
, 1

)
·K
L

= F (k, 1)−Fk (k, 1)·k

In equilibrium, the firm will hire labor Lt and rent capital Kt such that kt = Kt/Lt satisfies:

wt = F (kt, 1)− Fk (kt, 1) · kt (1.72)

Rt = Fk(kt, 1) (1.73)

In equilibrium, given wages (1.72) and rental prices (1.73), the firm makes zero profits, so
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per-capita profits are πt = 0:

πt =
F (Kt, Lt)

Lt
− wtLt

Lt
− rtKt

Lt
= F (kt, 1)− wt −Rtkt

= F (kt, 1)− (F (kt, 1)− Fk (kt, 1) · kt)︸ ︷︷ ︸
wt

−Fk(kt, 1)︸ ︷︷ ︸
Rt

kt

= F (kt, 1)− F (kt, 1) + Fk (kt, 1) · kt − Fk (kt, 1) · kt = 0 (1.74)

In this way, the equilibrium is fully characterized by prices {wt, Rt, rt}∞t=0, and allocations

{ct, kt+1, at+1}∞t=0, that satisfy equations (1.65)-(1.70) of the household, (1.72) and (1.73)

of the firm, and the market clearing conditions.

Using the solution to the firm’s problem, it can be shown that the allocations of the

social planner are equivalent to those of the competitive equilibrium. This happens because

in this context the welfare theorems continue to hold.

1.2.3 Steady State

A steady state is a competitive equilibrium in which all variables per capita remain constant

over time. In Section 1.1.3 this was trivial, since per-capita variables were equal to aggregate

variables, so there was no growth at all. In this section, in steady state per-capita variables

remain constant, but aggregate variables grow.

It is straightforward to verify that capital in steady state is uniquely pinned down by:

1

β
=

(1− δ + Fk(k
∗, 1))

(1 + n)

Once capital per capita k∗ is determined, all other variables can be pinned down using the

optimality conditions:

c∗ = F (k∗, 1)− (δ + n)k∗

i∗ = δk∗

w∗ = F (k∗, 1)− Fk(k∗, 1)k∗

R∗ = Fk(k
∗, 1)

r∗ = Fk(k
∗, 1)− δ
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Now, even though in steady state per-capita variables are constant, aggregate variables are

not. Recall that kt = Kt/Lt, ct = Ct/Lt, . . ., which means that in steady state:

Kt = k∗Lt = (1 + n)tk∗

Ct = c∗Lt = (1 + n)tc∗

...

In steady state aggregate variables grow at a rate n, the same as population. This model

is the first step towards models with positive growth.
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1.3 Endogenous labor supply

In Sections 1.1 and 1.2 we assumed that the utility function of households is a function

only of consumption and did not depend on leisure. This implies that households allocate

all of their time to work and nothing to leisure. This may not be a realistic assumption,

given that households decide every day how much time to devote to work and how much to

leisure. In particular, the model without labor decisions is not useful to study topics such

as labor markets, taxation, human capital, social security systems, among others. In this

section we extend the model presented to include endogenous labor decisions.

Assume again that the economy is composed of representative households and firms with

the same characteristics as before. In particular, let’s assume that households have size Lt

and each individual has 1 unit of time available to devote to labor or leisure, so the total

amount of time available within the household equals exactly Lt. Household size grows at

a constant rate n, such that Lt+1 = (1 + n)Lt.

However, assume that now households obtain utility from the fraction of time devoted

to leisure by all of its members. This means that households do not necessarily supply

inelastically all of their time to labor, but rather choose how much time to work out of the

total available time. If we denote by Lst the total amount of time devoted to work by all

members of a household of size Lt, the total time devoted to leisure is Lt − Lst . Therefore,

the utility function is now:

∞∑
t=0

βtu

(
Ct
Lt
,
Lt − Lst
Lt

)

Here, we assume that the utility function is concave in both arguments and the Inada

conditions on consumption hold:

1. uc, ul > 0

2. ucc, ull < 0

3. ucl > 0

4. limc→0 uc(c, l) =∞

5. limc→∞ uc(c, l) = 0
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The budget constraint that the household faces every period is:

Ct +Kt+1 +At+1 = (1− δ)Kt + wtL
s
t +RtKt + (1 + rt)At

where now Lst ≤ Lt. Again, I omitted including the profits that the household receives for

owning the firm, as in equilibrium they turn out to be equal to zero. The problem of the

household can be written in per-capita terms as:

max
ct,kt+1,lst

∞∑
t=0

βtu (ct, 1− lst ) s.t. (1.75)

∀t ∈ {0, 1, . . .} : ct + (1 + n)kt+1 + (1 + n)at+1 = (1− δ)kt + wtl
s
t +Rtkt + (1 + rt)at

ct, kt+1 ≥ 0, 0 ≤ lst ≤ 1, k0 given, a0 = 0 given

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 = 0

Now, the average fraction of time devoted to labor within the household lst is a choice.

Moreover, there is an additional restriction that bounds the total fraction of time devoted

to labor: 0 ≤ lst ≤ 1. This means that households cannot work more than the total amount

of time available, equal to 1.

In this section, I omit the definition of a competitive equilibrium, as it is analogous to

Definition 2. The only difference is that households now choose labor supply lst , so the labor

market clearing condition becomes lst = ldt .

The lagragean associated to the household’s problem is:

L =
∞∑
t=0

βtu (ct, 1− lst )+
∞∑
t=0

λt ((1− δ)kt + wtl
s
t +Rtkt + (1 + rt)at − ct − (1 + n)kt+1 − (1 + n)at+1)

The first order conditions are:

[ct] : βtuc(ct, 1− lst )− λt = 0

[lt] : −βtul(ct, 1− lst ) + λtwt = 0

[kt+1] : −λt(1 + n) + λt+1 (1− δ +Rt+1) = 0

[at+1] : −λt(1 + n) + λt+1 (1 + rt+1) = 0

[λt] : (1− δ)kt + wtl
s
t +Rtkt + (1 + rt)at − ct − (1 + n)kt+1 − (1 + n)at+1 = 0
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With endogenous labor choice, we have an additional first order condition, associated with

the optimal choice of labor supply. Combining the first two conditions:

wt · uc(ct, 1− lst ) = ul(ct, 1− lt)

This equation is often called the intra-temportal optimality condition. In the optimum,

the individual is indifferent between having an additional unit of leisure, or working an

additional unit of time and consuming the income. The left hand side of this equation

represents the marginal utility of working an additional unit of time: an additional unit of

time will generate income wt to the household that can be spent in consumption, whose

marginal utility is uc(ct, 1 − lt). The right hand side is the marginal utility of leisure. In

equilibrium, the marginal gains of working or enjoying leisure are the same.

As in past sections, the other optimality conditions are the Euler equations associated

to capital and risk-free assets, the budget constraint, and the transversality conditions.

The optimal allocation {ct, lst , kt+1, at+1}∞t=0 for the consumer, given prices {wt, Rt, rt}∞t=0,

is fully characterized by:

Euler eq.:
uc(ct, 1− lst )

βuc(ct+1, 1− lst+1)
=

(1− δ +Rt+1)

(1 + n)
, ∀t ≥ 0 (1.76)

uc(ct, 1− lst )
βuc(ct+1, 1− lst+1)

=
(1 + rt+1)

(1 + n)
, ∀t ≥ 0 (1.77)

Intratemporal: uc(ct, 1− lst ) =
ul(ct, 1− lt)

wt
, ∀t ≥ 0 (1.78)

Bud. const.: ct + (1 + n)kt+1 + (1 + n)at+1 = (1− δ)kt + wtl
s
t +Rtkt + (1 + rt)at (1.79)

∀t ≥ 0

Transv. cond.: lim
t→∞

βtuc(ct, 1− lst )kt+1 = 0 (1.80)

lim
t→∞

βtuc(ct, 1− lst )at+1 = 0 (1.81)

Init. cond.: k0, a0 given (1.82)

The firm’s problem is analogous to that of past sections, so I omit it in this section. In

particular, equilibrium factor prices wt and Rt are pinned down by equations (1.72) and

32



(1.73).

1.3.1 Steady State

It can be verified that in the stationary steady state the values of c∗, y∗, k∗ and l∗ are

uniquely pinned down by the following equations:

1

β
=

(1− δ + FK(k∗, l∗))

(1 + n)

·uc(c∗, 1− l∗) =
ul(c

∗, 1− l∗)
FL(k∗, l∗)

c∗ = F (k∗, l∗)− (n+ δ)k∗

...
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1.4 Exogenous Growth and Technological Change

Up to now, the model does not allow for long term growth; in steady state absolute variables

grow at exactly the same rate as population, so per capita variables remain constant. This

is not what we observe in reality. Most economies experience growth beyond the increase

in population size. This section describes a model in which there is exogenous growth

generated in steady state. Section 2 will introduce models in which long-term growth is

endogenously generated.

In this section, for simplicity, we will again assume that leisure does not generate utility

to households and labor is inelastically supplied. The model can be extended to have

endogenous labor supply as in Section 1.3.

Let’s assume now that the production function has a technological parameter At that

augments labor productivity F (Kt, AtLt), and grows at an exogenous rate g, such that:

At+1 = (1 + g)At

If we assume that productivity in period 0 is A0 = 1, this means that At = (1 + g)t.

Note that, naturally, our economy will never reach a steady state, as productivity is

growing in the long run, so the economy will be capable of increasing production, consump-

tion and capital per worker period after period. Instead, we will study the economy when

it reaches a state in which per-capita variables grow at a constant rate, which is commonly

known as a balanced growth path. Note that a steady state, which is when all per-capita

variables remain constant, is a particular case of a balanced growth path, in which variables

grow at a rate exactly equal to zero.

Before solving the model, let’s understand what a balanced growth path implies, and

analyze the conditions under which a balanced growth path can exist. First, on a balanced

growth path all variables grow at a constant rate. In principle, growth rates need to be the

same for different variables. However, as the next theorem shows, on a balanced growth

path all variables grow at the same rate.

Theorem 3. Along a balanced growth path, all per-capita variables grow at the same rate.

Proof. Assume we solve the model in per-capita terms, as in Section 1.2 with population

growth. The resulting resource constraint is one of the necessary and sufficient conditions
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for an optimum:

ct = F (kt, At) + (1− δ)kt − (1 + n)kt+1 (1.83)

Define the growth rate of per-capita consumption along a balanced growth path as γc, such

that ct = (1 + γc)
tc0, assuming the economy starts at period 0 on the balanced growth

path. Similarly, define γk and γy as the growth rates of per-capita capital and income on a

balanced growth path, such that kt = (1 + γk)
tk0 and yt = (1 + γy)

ty0.

Using these definitions, we can express the resource constraint (1.83) as:

(1 + γc)
tc0 = F ((1 + γk)

tk0, (1 + g)t) + (1− δ)(1 + γk)
tk0 − (1 + n)(1 + γk)

t+1k0

Dividing both sides by (1 + γk)
t:

(
1 + γc
1 + γk

)t
c0 = F

(
k0,

(
1 + g

1 + γk

)t)
+ (1− δ)k0 − (1 + n)(1 + γk)k0

The only way for this equation to hold for all t is if the terms that depend on t do not vary,

which implies that: (
1 + γc
1 + γk

)
=

(
1 + g

1 + γk

)
= 1

This implies that γc = γk = g. Also, output per-capita is:

yt = F ((1 + g)tk0, (1 + g)t) = (1 + g)tF (k0, 1) = (1 + γy)
ty0

This implies that γy = γc = γk = g.

Re-writing the resource constraint:

(1 + γy)
ty0 = (1 + γc)

tc0 + (1 + n)(1 + γk)
t+1k0 − (1− δ)(1 + γk)

tk0

⇐⇒ y0 = c0 + (1 + n)(1 + g)k0 − (1− δ)k0

⇐⇒ y0 = c0 + (n+ g + ng + δ)k0︸ ︷︷ ︸
Investment
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This means that, as long as population and technological growth are small (say, around

1 − 2%, which means ng ≈ 0.0002 ≈ 0), investment in the balanced growth path replaces

depreciated capital (δk0), and augments the capital stock such that capital per capita and

per level of technology remains constant next period ((n+ g)k0).

Now, let’s analyze the conditions under which a balanced growth path can exist. Take

the Euler equation resulting from solving the model in per-capita terms:

u′(ct)

βu′(ct+1)
=

1− δ + Fk(kt+1, At+1)

(1 + n)
(1.84)

On the right-hand side, the only non-constant term is Fk(kt+1, At+1). Because of the

constant-returns-to-scale assumption, Fk(kt+1, At+1) = Fk(kt+1/At+1, 1). On a balanced

growth path, given that kt = (1 + g)tk0 and At = (1 + g)t, the term kt+1/At+1 = k0 re-

mains constant. Therefore, on a balanced growth path, the term u′(ct)/βu
′(ct+1) must be

constant. This implies the following result:

Theorem 4. There exists a balanced growth path if and only if u is CRRA.

Proof. (⇐=) :Assume the utility function u is CRRA, which means that u(c) = c1−σ

1−σ . This

means that u′(c) = c−σ, and the Euler equation (1.84) becomes:

1

β
·
(

ct
ct+1

)−σ
=

1− δ + Fk(k0, 1)

(1 + n)

On a balanced growth path, ct+1 = (1+g)ct, so there exists a balanced growth path as long

as the economy starts at a capital level k0, such that:

1

β
· (1 + g)σ =

1− δ + Fk(k0, 1)

(1 + n)

(=⇒) : Now, assume there exists a balanced growth path, such that ct = (1 + g)ct+1. Given

the Euler equation (1.84), this means that:

u′(ct)

βu′((1 + g)ct)
= M
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For some constant M . Rearranging and differentiating with respect to ct:

u′(ct) = M · βu′((1 + g)ct)

⇐⇒ u′′(ct) = M · β(1 + g)u′′((1 + g)ct)

⇐⇒ u′′(ct) = (1 + g)
u′(ct)

βu′((1 + g)ct)
· βu′′((1 + g)ct)

⇐⇒ u′′(ct)ct
u′(ct)

=
u′′((1 + g)ct)(1 + g)ct

u′((1 + g)ct)
=
u′′(ct+1)ct+1

u′(ct+1)

This means that u′′(ct)ct
u′(ct)

is constant, which is the definition of CRRA.

Therefore, the only models in which a balanced growth path can exist are those in

which the utility function takes the CRRA form. Moreover, on a balanced growth path all

variables grow at the same rate as the technological change.

1.4.1 Solving for a Competitive Equilibrium

This section solves for the competitive equilibrium when there is technological change. As

before, I omit the definition of a competitive equilibrium, given that it is analogous to the

definitions in past sections.

Note that we can re-state the definition by saying that the economy reaches a balanced

growth path, whenever all variables per effective unit of labor are constant. Henceforth, we

will denote variables per effective unit of labor with a tilde:

c̃t =
Ct
AtLt

=
ct
At

ỹt =
Yt
AtLt

=
yt
At

k̃t =
Kt

AtLt
=
kt
At

...

We now write the household’s problem in terms of per-effective-unit-of-labor variables. The
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household’s budget constraint becomes:

c̃t + ĩt + (1 + g)(1 + n)ãt+1 = w̃t + rtk̃t + π̃t + ãt

where w̃t = wt/At. Now, to express the capital evolution equation in terms of variables per

efficiency unit, note that:

Kt+1

AtLt
=
Kt+1

AtLt

(
At+1Lt+1

At+1Lt+1

)
=

Kt+1

At+1Lt+1

(
At+1

At

)(
Lt+1

Lt

)
= (1 + g)(1 + n)k̃t+1

This means that the capital evolution equation can be written as:

(1 + g)(1 + n)k̃t+1 = (1− δ)k̃t + ĩt

The total output in terms of per-effective-units-of-labor is:

ỹt =
F (Kt, AtLt)

AtLt
= F

(
Kt

AtLt
,
AtLt
AtLt

)
= F (k̃t, 1)

Now, we explicitly use the CRRA utility function, as stated in the previous theorem:

u(c) =
c1−σ

1− σ

If we multiply and divide by At, we get:

∞∑
t=0

βtu (ct) =
∞∑
t=0

βt

(
At
At
ct

)1−σ

1− σ

=

∞∑
t=0

βt
(Atc̃t)

1−σ

1− σ

=

∞∑
t=0

βtA1−σ
t · c̃t

1−σ

1− σ

=

∞∑
t=0

β̂t
c̃t

1−σ

1− σ
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where β̂ = β · (1 + g)1−σ. The household’s problem is given by:

max
c̃t,k̃t+1

∞∑
t=0

β̂tu (c̃t) s.t. (1.85)

∀t ∈ {0, 1, . . .} : c̃t + (1 + g)(1 + n)k̃t+1 + (1 + g)(1 + n)ãt+1 =

(1− δ)k̃t + w̃t +Rtk̃t + (1 + r)ãt

c̃t, k̃t+1 ≥ 0, k̃0 given

lim
T→∞

(
T∏
t=0

1

1 + rt

)
ãT+1 ≥ 0

The solution to the household’s problem yields equations that are analogous to past sec-

tions’. In particular, the solution yields the following Euler equation:

u′(c̃t)

β̂u′(c̃t+1)
=

(1− δ +Rt+1)

(1 + n)(1 + g)

The firm’s problem is:

max
Lt,Kt

F (Kt, AtLt)− wtLt − rtKt

So prices are set by:

wt = At · Fl(Kt, AtLt)

rt = Fk(Kt, AtLt)

To express prices in per-efficiency units of labor:

F (Kt, AtLt) = AtLtF

(
Kt

AtLt
, 1

)
= AtLtF (k̃t, 1)

So:

AtFl(Kt, AtLt) = At ·
[
F

(
Kt

AtLt
, 1

)
+ LtFk

(
Kt

AtLt
, 1

)(
−Kt

AtL2
t

)]

= At

[
F

(
Kt

AtLt
, 1

)
+ Fk

(
Kt

AtLt
, 1

)(
−Kt

AtLt

)]
= AtF (k̃t, 1) +AtFk(k̃t, 1)k̃t
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Therefore:

w̃t = F (k̃t, 1) + Fk(k̃t, 1)k̃t

rt = Fk(k̃t, 1)

1.4.2 Balanced Growth Path

On a balanced growth path, all variables per effective unit of labor remain constant:

c̃t = ˜ct+1 = . . . = c̃∗

k̃t = ˜kt+1 = . . . = k̃∗

...

This implies that, on a balanced growth path:

FK(k̃∗, 1) =
(1 + n)(1 + g)

β̂
− 1 + δ (1.86)

c̃∗ = F (k̃∗, 1)− (δ + n+ g + ng)k̃∗ (1.87)

Once we have solved for the balanced growth path variables, we can obtain the per-capita

variables by multiplying by At = (1 + g)t:

kt = (1 + g)tk∗, ct = (1 + g)tc∗, . . .

If we plot log(yt), log(kt), . . . against time t, we obtain a linear slope, as is the case for many

developed countries in the last century. Figure 1.1 illustrates per-capita GDP over the

last century, where the vertical axis represents constant U.S. dollars in logarithmic scale.

According to this Figure, the neoclassical growth model seems a sufficiently good tool to

analyze growth in economies that seem to have reached a “balanced growth path”, such as

the U.S. or some European countries.

The main advantage of this section, as opposed to past sections, is that with exogenous

growth we have a model in which per-capita variables grow in the long run, as is observed

for most nations. However, so far we have assumed that growth is driven by growth in

technology, which follows a completely exogenous process. Later sections will study models

in which technological progress is an endogenous variable in the model.
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Figure 1.1: Per-capita GDP.

1.5 Numerical Methods I

Up to now, we have studied economies in which the equilibrium and/or steady state is fully

characterized by a set of equations but, in most cases, there is no closed-form solution for

each of the variables. This section allows us to compute the actual values of the variables

using a method to solve non-linear equations called the Newton-Raphson method. The

importance of this method is illustrated in the following two examples:

1.5.1 Example I - Computation of Steady State/Balanced Growth Path

Recall that in past sections we computed the steady state/balanced growth path values of

capital k∗, consumption c∗, production y∗, and prices w∗, R∗ and r∗ in the economy (see

equations (1.42)-(1.47)). To obtain consumption and production, we first had to solve for

capital in steady state/balanced growth path, implicitly defined by equation (1.42). The

question that arises is, given parameters for the models described (β, n, g, . . .), how can we

numerically obtain the value of k∗?

For example, note that for the model with technological change (equation (1.86)), the

level of capital per-efficiency unit of labor in steady state is given by the value k̃∗ that
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solves:

Fk(k̃
∗, 1) =

(1 + n)(1 + g)

β̂
− 1 + δ

This equation can be rearranged, so that k̃∗ solves:

Fk(k̃
∗, 1)− (1 + n)(1 + g)

β̂
+ 1− δ = 0

So the capital per-efficiency unit of labor is determined by the zero, or root, of the non-linear

equation:

g(x) = Fk(x, 1)− (1 + n)(1 + g)

β̂
+ 1− δ

That is, k̃∗ is such that g(k̃∗) = 0. The Newton-Raphson method studied in this section

is a first approach to finding the zero of this equation, which will allow us to compute the

values of the variables in steady state.

1.5.2 Example II - Computation of Equilibrium

The second example to illustrate the importance of solving systems of non-linear equations is

a simplified two-period version of the neoclassical growth model. Assume that the individual

only lives for two periods, and chooses consumption every period and the amount of capital

to accumulate from the first to the second period. Further, assume there is no population

growth. The problem of the household is:

max
c0,c1,k1

u (c0) + βu (c1) s.t.

c0 + k1 = (1− δ)k0 + w0 + r0k0

c1 = (1− δ)k1 + w1 + r1k1

c0, c1, k1 ≥ 0, k0 given

The lagrangean is:

L = u (c0) +βu (c1) +λ0 ((1− δ)k0 + w0 + r0k0 − c0 − k1) +λ1 ((1− δ)k1 + w1 + r1k1 − c1)
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The first order conditions are:

[c0] : uc(c0)− λ0 = 0

[c1] : βuc(c1)− λ1 = 0

[k1] : −λ0 + λ1 (1− δ + r1) = 0

[λ0] : (1− δ)k0 + w0 + r0k0 − c0 − k1 = 0

[λ1] : (1− δ)k1 + w1 + r1k1 − c1 = 0

Which, getting rid of the λ’s, yields the following optimality conditions:

uc(c0) = (1− δ + r1)βuc(c1) (1.88)

(1− δ)k0 + w0 + r0k0 − c0 − k1 = 0 (1.89)

(1− δ)k1 + w1 + r1k1 − c1 = 0 (1.90)

The first order conditions for the firm are:

w0 = Fl(k0, 1) (1.91)

w1 = Fl(k1, 1) (1.92)

r0 = Fk(k0, 1) (1.93)

r1 = Fk(k1, 1) (1.94)

In order to compute the equilibrium of the economy described we must find (c0, c1, k1, w0, w1, r0, r1)

that solve the system of equations (1.88)-(1.94). We can rearrange each equation, to define

the function f in the following way:

f(x) =



f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)

f7(x)


=



uc(c0)− (1− δ + r1)βuc(c1)

(1− δ)k0 + w0 + r0k0 − c0 − k1

(1− δ)k1 + w1 + r1k1 − c1

w0 − Fl(k0, 1)

w1 − Fl(k1, 1)

r0 − Fk(k0, 1)

r1 − Fk(k1, 1)
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Where x = (c0, c1, k1, w0, w1, r0, r1). Finding an equilibrium to such economy is equivalent

to finding a root, or zero, of the function f . That is, an equilibrium is x∗ such that

f(x∗) = 0. We can also get rid of the last 4 equations, by plugging in the prices directly in

the optimality conditions of the household:

f(x) =


f1(x)

f2(x)

f3(x)

 =


uc(c0)− (1− δ + Fk(k1, 1))βuc(c1)

(1− δ)k0 + Fl(k0, 1) + Fk(k0, 1)k0 − c0 − k1

(1− δ)k1 + Fl(k1, 1) + Fk(k1, 1)k1 − c1


As in last example, the Newton-Raphson will be useful to solve for the equilibrium of the

economy.

1.5.3 Newton-Raphson

The reasoning behind the method is as follows. Assume we have a vector x = (x1, . . . , xn) ∈

Rn, and a function f : Rn → Rn, which can be written as:

f(x) =


f1(x)

f2(x)
...

fn(x)


Suppose we are interested in finding a root to that function. That is, suppose we are

interested in finding x̄ ∈ Rn, such that f(x̄) = 0, and assume we start from a point x̂ which

is sufficiently close to x̄. Consider the following Taylor expansion of the function f around

the point x̄:

f(x̄) ≈ f(x̂) + J(x̂) · (x̄− x̂)

Where J is the Jacobian, or matrix of first derivatives of f . Given that f(x̄) = 0, we can

rewrite it as:

0 ≈ f(x̂) + J(x̂) · (x̄− x̂) ⇐⇒ x̄ ≈ x̂− J−1(x̂) · f(x̂) (1.95)

This means that, if we start from a guess x̂ of the root of f that is sufficiently close to x̄,

we can approximate x̄ using equation (1.95).
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In matrix form, this can be written as:


x̄1

x̄2

...

x̄n

 ≈


x̂1

x̂2

...

x̂n

−


∂f1(x̂)
∂x1

. . . ∂f1(x̂)
∂xn

∂f2(x̂)
∂x1

. . . ∂f2(x̂)
∂xn

...
. . .

...

∂fn(x̂)
∂x1

. . . ∂fn(x̂)
∂xn



−1

·


f1(x̂)

f2(x̂)
...

fn(x̂)



Therefore, the Newton-Raphson algorithm is as follows:

Algorithm 1 (Newton-Raphson).

1. Set s = 0, and start with a guess x0 for the root of f .

2. Compute the function f(xs) and the Jacobian J(xs).

3. Set xs+1 as follows:

xs+1 = xs − J(xs)−1f(xs)

4. If
∥∥xs+1 − xs

∥∥ < ε, stop. Else, set s = s+ 1 and go to 2.

The algorithm is illustrated in Figure 1.21. In this algorithm, the norm ‖·‖ can be the

euclidean norm, or any other norm in Rn. If the starting point x0 is sufficiently close to

the root x̄, it can be shown that the method converges and the result obtained is close to

the root. However, if we start the method far from the root, the algorithm can converge to

another root, or diverge.

With this algorithm, we can approximate numerically the roots to non-linear systems

of equations. How can we apply the method to solve for the steady state values in Section

1.5.1, and for the equilibrium in Section 1.5.2?

1Source: https://www.geeksforgeeks.org/program-for-newton-raphson-method/
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Figure 1.2: Illustration of Newton-Raphson method.

Example I - Computation of Steady State

Recall that to find the level of capital in steady state, it suffices to find the value x such

that g(x) = 0, where:

g(x) = Fk(x, 1)− (1 + n)(1 + g)

β̂
+ 1− δ

The Jacobian of g is simply its derivative with respect to x, equal to:

J(x) = Fkk(x, 1)

Therefore, in every iteration the algorithm updates the value of x as:

xs+1 = xs − Fkk(xs, 1) ·
(
Fk(x

s, 1)− (1 + n)(1 + g)

β̂
+ 1− δ

)

If we start at a point x0 which is sufficiently close to the value k̃∗, the Newton-Raphson

algorithm will converge to an approximation of k̃∗.

This algorithm can be implemented in the way described above, by computing the

derivative and iterating until convergence. However, most programming languages already

have built-in functions that solve non-linear systems of equations. In Matlab, a function

to solve non-linear equations is fsolve, which receives as input a function g and an initial
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guess of a root x0. For example, if we assume that the production function takes the form

of a Cobb-Douglas function, such that F (K,L) = KαL1−α and FK(k, 1) = αkα−1, the code

in Box 1.1 computes the steady state value of capital.

1 % Parameter values

2 aalpha = 0.3;

3 bbeta = 0.95;

4 n = 0.02;

5 g = 0.03;

6

7 % Defining the function g

8 g = @(x) aalpha *(x^(aalpha -1)) -((1+n)*(1+g))/bbeta+1-ddelta

9 x0 = 1;

10

11 % Non -linear equation solver

12 fsolve(g, x0);

Box 1.1: MATLAB code to compute steady state level of capital.

Example II - Computation of Equilibrium

Recall that finding an equilibrium in the two-period environment is equivalent to finding a

root for f , where:

f(x) =



f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)

f7(x)


=



uc(c0)− (1− δ + r1)βuc(c1)

(1− δ)k0 + w0 + r0k0 − c0 − k1

(1− δ)k1 + w1 + r1k1 − c1

w0 − Fl(k0, 1)

w1 − Fl(k1, 1)

r0 − Fk(k0, 1)

r1 − Fk(k1, 1)
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In order to apply the algorithm directly, we can compute the Jacobian matrix by finding

all the cross derivatives of f . For example:

f11(x) = ucc(c0)

f12(x) = −(1− δ + r1)βucc(c1)

f21(x) = −1

f22(x) = 0

...

As in the past example, we can use the fsolve function. Box 1.2 illustrates the definition

of function f .

1 function F = sys_equations(c0, c1, k1, w0, w1, r0, r1)

2 F(1) = c0^(-ssigma) - (1-ddelta+r1)*bbeta*c1^(-ssigma);

3 F(2) = (1-ddelta)*k0+w0+r0*k0-c0-k1;

4 F(3) = (1-ddelta)*k1+w1+r1*k1-c1;

5 F(4) = w0 - (1-aalpha)*k0^aalpha;

6 F(5) = w1 - (1-aalpha)*k1^aalpha;

7 F(6) = r0 - aalpha*k0^(aalpha -1);

8 F(7) = r1 - aalpha*k1^(aalpha -1);

9 end

Box 1.2: MATLAB code to compute the equilibrium.

1.5.4 Transitional Dynamics

The last example was a simplified, two-period version of the economy described in Section

1.1, where households live for an infinite number of periods. Our ultimate goal is to compute

the equilibrium in such an economy. It turns out that solving for that equilibrium is not

very different from what we have done so far.
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Recall that the optimality conditions in Section 1.1 at every period t are given by:

u′(ct)

βu′(ct+1)
= (1− δ + rt+1)

ct + kt+1 = (1− δ)kt + F (kt, 1)

wt = Fl(kt, lt)

rt = Fk(kt, lt)

By plugging the prices in the household’s optimality conditions, the equilibrium allocations

are fully characterized by the following two equations for every t:

Ψ1(ct, ct+1, kt, kt+1) =
u′(ct)

βu′(ct+1)
− (1− δ + Fk(kt+1, 1)) = 0

Ψ2(ct, ct+1, kt, kt+1) = (1− δ)kt + Fl(kt, 1) + Fk(kt, 1)kt − ct − kt+1 = 0

The problem is that now, as opposed to the second example above, we have an infinite

number of periods, which means that to compute the equilibrium we must solve a system of

infinitely many equations. The way around this difficulty is the following. Recall that, no

matter what is the starting point k0, we assumed this economy converges to a steady state in

the long run, in which all variables are constant. Technically speaking, if the economy starts

out of steady state, it will never exactly reach steady state, but will get arbitrarily close to

it. This means that, for a sufficiently large T , we can assume that the economy effectively

reaches steady state, which means that kt = k∗ for all t ≥ T . Therefore, since variables

remain constant after T , the system of equations we need to solve will only include the

equations up to period T (those corresponding to t > T are redundant). This assumption

reduces the number of equations in our system significantly, to a finite number of equations,
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namely:

Ψ1(c0, c1, k0, k1) = 0

Ψ2(c0, c1, k0, k1) = 0

Ψ1(c1, c2, k1, k2) = 0

Ψ2(c1, c2, k1, k2) = 0

. . .

Ψ1(cT−1, cT , kT−1, kT ) = 0

Ψ2(cT−1, cT , kT−1, kT ) = 0

This means that, to solve for the equilibrium variables, we should solve for {ct, kt+1}Tt=0.

In the above system, there are 2 · (T + 1) unknowns and 2T equations. Recall that k0 is

given and kT = k∗, so can effectively solve for an equilibrium by finding the root of the

system of equations.

Figure 1.3 illustrates the behavior of an example economy that starts at 10% the capital

of the steady state, assuming the utility function is u(c) = c1−σ

1−σ and the production function

is f(k, 1) = αk1−α. After 10 periods, the economy has already converged to steady state.
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C
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Figure 1.3: Transitional dynamics to steady state.
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1.5.5 Approximating the Jacobian

If we want to apply the Newton-Raphson method we must know the Jacobian matrix J

of f , which means that we must be able to obtain the derivatives of f with respect to

every dimension. In many cases, as the two examples described above, we can obtain the

derivatives of f and apply directly Algorithm 1. However, there are cases in which it is not

possible to obtain the Jacobian matrix.

If we cannot explicitly compute the derivatives of f , we can obtain a numerical approx-

imation to J . At every iteration, instead of computing J(x), we will have to approximate

it.

The Jacobian can be written as:

J(x) = [J1(x), J2(x), . . . , Jn(x)]

Where Ji(x) is the derivative of f with respect to xi:

Ji(x) =



∂f1(x)
∂xi

∂f2(x)
∂xi

∂f3(x)
∂xi
...

∂fn(x)
∂xi


Making a Taylor approximation of f , for a sufficiently small h ≥ 0:

f(x1 + h1, x2, x3, . . . , xn) ≈ f(x1, x2, x3, . . . , xn) + J1(x)h1

f(x1, x2 + h2, x3, . . . , xn) ≈ f(x1, x2, x3, . . . , xn) + J2(x)h2

f(x1, x2, x3 + h3, . . . , xn) ≈ f(x1, x2, x3, . . . , xn) + J3(x)h3

...

f(x1, x2, x3, . . . , xn + hn) ≈ f(x1, x2, x3, . . . , xn) + Jn(x)hn
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Which means that we can approximate J1, . . . , Jn as:

J1(x) ≈ 1

h1
(f(x1 + h1, x2, x3, . . . , xn)− f(x1, x2, x3, . . . , xn))

J2(x) ≈ 1

h2
(f(x1, x2 + h2, x3, . . . , xn)− f(x1, x2, x3, . . . , xn))

...

Jn(x) ≈ 1

hn
(f(x1, x2, x3, . . . , xn + hn)− f(x1, x2, x3, . . . , xn))

If h ≥ 0, we are approximating J from the right. Analogously, we can approximate J from

the left:

J1(x) ≈ 1

h1
(f(x1, x2, x3, . . . , xn)− f(x1 − h1, x2, x3, . . . , xn))

J2(x) ≈ 1

h2
(f(x1, x2, x3, . . . , xn)− f(x1, x2 − h2, x3, . . . , xn))

...

Jn(x) ≈ 1

hn
(f(x1, x2, x3, . . . , xn)− f(x1, x2, x3, . . . , xn − hn))

Finally, we can approximate J as an average of the right and left approximations:

J1(x) ≈ 1

2h1
(f(x1 + h1, x2, x3, . . . , xn)− f(x1 − h1, x2, x3, . . . , xn))

J2(x) ≈ 1

2h2
(f(x1, x2 + h2, x3, . . . , xn)− f(x1, x2 − h2, x3, . . . , xn))

...

Jn(x) ≈ 1

2hn
(f(x1, x2, x3, . . . , xn + hn)− f(x1, x2, x3, . . . , xn − hn))

In the MATLAB examples above, we did not explicitly state whether the algorithm should take

a numerical approximation of the Jacobian at every iteration, or use an explicit expression

to compute it. Having to approximate J at every iteration might slow down the algorithm,

given the additional step needed for this. To avoid this extra cost, we can explicitly tell

MATLAB that we are going to supply the Jacobian matrix. The code in Box 1.3 activates the

option in which we supply the fsolve function with the Jacobian matrix.
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1 options = optimoptions(options ,’SpecifyObjectiveGradient ’,

true);

2 fsolve(@(x) equilibrium(K0 , Kss , x), X, options);

Box 1.3: MATLAB code to supply fsolve with Jacobian function.

In order for the SpecifyObjectiveGradient to work, the objective function equilibrium

must generate two outputs: the output of the function and the Jacobian matrix. Table 1.1

illustrates the difference in computation times with and without gradient in the above ex-

ample for certain parameter values. In most cases, the computation time is faster when the

user provides the Jacobian matrix to the fsolve function.

T Time (s) with gradient Time (s) without gradient

50 0.047 0.061

100 0.088 0.159

200 0.34 0.51

500 1.93 2.79

1000 14.4 12.3

Table 1.1: Average computation times over 20 repetitions with and without gradient.

1.5.6 Gauss-Seidel Algorithm

The method described above to solve for an equilibrium can be computationally costly to

implement. Assume, for example, that we have an economy with endogenous labor and

different types of assets such that, for every period t, we have three or more optimality

conditions. Assume also that the transition from the initial state k0 to the steady state

takes 30 or more periods. This means that in such an economy we would have to find the

root of a system of 90+ equations. This can take quite some time, so the method described

may not be very efficient.

In the Gauss-Seidel algorithm, instead of solving for all equilibrium conditions at the

same time, we solve successively the system corresponding to every period t. In this way,
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instead of solving the system of all equations at the same time, we solve many systems of

equations, one after the other.

To implement the algorithm, we can simplify the system of equations Ψ1 and Ψ2 by

solving for ct in the budget constraint and plugging it in the Euler equation in the following

way:

Ψ(kt, kt+1, kt+2) =
u′((1− δ)kt + Fl(kt, 1) + Fk(kt, 1)kt − kt+1)

βu′((1− δ)kt+1 + Fl(kt+1, 1) + Fk(kt+1, 1)kt+1 − kt+2)
−(1−δ+Fk(kt+1, 1)) = 0

Now, to find an equilibrium we must find the capital sequence that satisfies the system of

equations Ψ(kt, kt+1, kt+2) for every t. The following algorithm does that:

Algorithm 2 (Gauss-Seidel).

1. Set s = 0, and start with a guess k0
1, k

0
2, . . . , k

0
T−1 for the sequence of capital along the

transition, starting from k0 and ending in kT = k∗.

2. For every j ∈ {1, . . . , T−1}, find the root x∗ of Ψ(ksj−1, x, k
s
j+1), such that Ψ(ksj−1, x

∗, ksj+1) =

0. Set ks+1
j = x∗.

3. If
∥∥(ks+1

1 , . . . , ks+1
T−1)− (ks1, . . . , k

s
T−1)

∥∥ < ε, stop. Else, set s = s+ 1 and go to 2.

Once we have found the sequence of capital along the transition from k0 to k∗, we

can construct the sequence of all other variables using the production function, the budget

constraint, the capital evolution equation, and so on:

yt = f(kt, 1)

ct = (1− δ)kt + Fl(kt, 1) + Fk(kt, 1)kt − kt+1

it = k+1 − (1− δ)kt
...
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1.6 Recursive Representation and Dynamic Programming

The main problem with the model described in Sections 1.1-1.4 is that problems such as the

household’s, described by equation (1.17), require maximizing the utility function over an

infinite space. The solution to the consumer’s problem are infinite sequences {ct, kt, it}∞t=0

for consumption, capital and investment. When the functional forms are such that we

do not have closed-form solutions, as the one obtained for the log utility case in Section

1.1.4, the problem can become infeasible to estimate. The purpose of this section is to

transform the consumer’s problem in such a way that it can be solved with the use of

dynamic programming.

1.6.1 Social Planner’s Problem

First, let’s take the social planner’s problem (1.6) and define the function V in the following

way:

V (k0) := max
ct,kt+1≥0

t≥0
k0 given

∞∑
t=0

βtu (ct) s.t. (1.96)

ct + kt+1 = (1− δ)kt + F (kt, 1)

The function V is the maximum lifetime discounted utility attainable by an individual

that starts life with capital level equal to k0 and chooses optimally every period. Henceforth,

we are going to call the function V the value function. Note that the maximum utility

attainable V is a function of the stock of capital k0 owned by the individual at the beginning

of her life. In our setup, it can be shown that the value function is increasing in k0; a

consumer that starts life with a larger level of capital will be able to consume more over

her life. We refer to k0 as an individual state variable. In this problem, the only state

variable is k0, as this is the only value needed in period 0 to compute the lifetime utility

and policy functions.

Now, let’s rewrite the social planner’s problem in the following way:
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V (k0) = max
ct,kt+1≥0

t≥0
k0 given

∞∑
t=0

βtu (ct) s.t. (1.97)

ct + kt+1 = (1− δ)kt + F (kt, 1)

= max
ct,kt+1≥0

t≥0
k0 given

u (c0) + β ·
∞∑
t=1

βt−1u (ct) s.t.

ct + kt+1 = (1− δ)kt + F (kt, 1)

= max
c0,k1≥0
k0 given

u (c0) + β ·

 max
ct,kt+1≥0

t≥1
k1 given

∞∑
t=1

βt−1u (ct)

 s.t.

ct + kt+1 = (1− δ)kt + F (kt, 1)

= max
c0,k1

u (c0) + β ·

 max
ct+1,kt+2≥0

t≥0
k1 given

∞∑
t=0

βtu (ct+1)

 s.t.

ct + kt+1 = (1− δ)kt + F (kt, 1)

Note the similarities between the problem inside brackets in the last line and the problem

in the first line of equation (1.97). Given that, in our environment, the utility and production

functions remain constant over time, these two problems are equivalent to each other, except

for the fact the in the first line the initial level of capital is given by k0, while in the problem

inside brackets the initial level of capital is given by k1. This means that the problem inside

brackets is simply V (k1), and we can rewrite the original problem as:

V (k0) = max
c0,k1≥0

u (c0) + βV (k1) s.t.

c0 + k1 = (1− δ)k0 + F (k0, 1)

To simplify notation, we will not use subscripts of time and, instead, will denote variables
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in the present period without apostrophe (c, k, . . .), and variables that correspond to one

period ahead with one apostrophe (c′, k′, . . .). In this way, the social planner’s problem is:

V (k) = max
c,k′≥0

u (c) + βV (k′) s.t. (1.98)

c+ k′ = (1− δ)k + F (k, 1)

This form of writing the social planner’s problem is called the recursive formulation

and can be shown to be equivalent to the original problem. The interpretation of this

equation is that the maximum attainable lifetime utility is the sum of today’s maximum

utility u (c) plus the discounted maximum utility attainable in the future βV (k′), given

today’s choice for k′. This problem is equivalent to the original problem, because it is

equivalent to choose simultaneously the lifetime consumption and capital accumulation

streams {ct, kt+1}∞t=0, or to choose optimally today’s consumption and capital accumulation,

given that you are going to choose optimally in the future. Equation (1.98) is called the

Bellman equation.

What are the unknowns in the Bellman equation? The Bellman equation is a functional

equation, which means that, as opposed to the equations we are used to in which unknowns

are scalars or vectors, in this case the unknowns are functions. There are three unknowns.

The first unknown is a function V (k), which gives the maximum utility for every level of

individual capital k. This function appears on both sides of the equation, so solving for it

means finding a function V that satisfies (1.98). Second, in order to achieve the utility level

V (k), we need to know what are the optimal levels of consumption and capital accumulation

for every capital stock k. This means that the solution to the Bellman equation are three

functions of k: V (k), c(k) and k′(k). These last two functions are called policy functions,

as they instruct the social planner what to choose, given a capital stock k.

Note that, given that the recursive representation is equivalent to the original problem

(1.6), we can construct the value function, and lifetime consumption and capital accumu-
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lation sequences using the policy functions:

c0 = c(k0), k1 = k′(k0)

c1 = c(k1), k2 = k′(k1) = k′(k′(k0))

c2 = c(k2), k3 = k′(k2) = k′(k′(k1)) = k′(k′(k′(k0)))

...

Also, we know that the total lifetime utility, given k0, is given by:

V (k0) =
∞∑
t=0

βtu(ct)

The matter of how to solve the Bellman equation is the subject of Section 1.6.3. The

techniques used to solve for it are a consequence of mathematical results on functional

analysis, that ensure that the methods used yield a correct solution. A review of the

mathematical results is the subject of another section.

1.6.2 Recursive Competitive Equilibrium

Having defined the recursive formulation of the social planner, we can define the equivalent

concept for the household’s problem (1.17). There are two main differences. First, in the

competitive equilibrium the household has access to risk-free bonds at, which determine the

lifetime consumption and utility, so they must be included as an individual state variable.

Second, as opposed to the social planner, who only needs to know the current level of

capital k0 of the household to determine lifetime discounted utility and policy functions, in

a competitive equilibrium the household also needs to know what the prices in the economy

will be for every t. Recall the prices are determined by aggregate capital in the economy,

such that wt = Fl(Kt, 1), Rt = Fk(Kt, 1), and rt = Rt − δ. This means that the household

needs to know what the aggregate level of capital will be in the economy, to be able to

forecast correctly the sequence of prices. Therefore, the relevant state variables in the

competitive equilibrium set-up are individual capital k0, individual risk-free bonds a0, and

aggregate capital in the economy Kt every period.

We have to explicitly separate individual and aggregate capital because, since we as-

sumed there is a continuum of households, individual capital kt need not be exactly equal to
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aggregate capital Kt. In equilibrium, in a representative agent economy, they will be equal

to each other, but ex-ante they are not. Therefore, when describing the state variables we

must distinguish between individual and aggregate state variables. In this case, the state

variables are k0, a0, and Kt for every t.
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We can write the household’s problem as:

V (k0, a0, {Kt}∞t=0) = max
ct,kt+1≥0

t≥0
k0,a0 given

∞∑
t=0

βtu (ct) s.t. (1.99)

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 = 0

= max
ct,kt+1≥0

t≥0
k0,a0 given

u (c0) + β ·
∞∑
t=1

βt−1u (ct) s.t.

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 = 0

= max
c0,k1≥0

k0,a0 given

u (c0) + β ·

 max
ct,kt+1≥0

t≥1
k1,a1 given

∞∑
t=1

βt−1u (ct)

 s.t.

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 = 0

= max
c0,k1

u (c0) + β ·

 max
ct+1,kt+2≥0

t≥0
k1,a1 given

∞∑
t=0

βtu (ct+1)

 s.t.

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

lim
T→∞

(
T∏
t=0

1

1 + rt

)
aT+1 = 0
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The household’s problem in recursive form is:

V (a, k,K) = max
c,k′≥0,a′

u (c) + βV (a′, k′,K ′) s.t. (1.100)

c+ k′ + a′ = (1− δ)k + w(K) +R(K)k + (1 + r(K))a

K ′ = H(K)

Again, we will denote k and a as individual state variables, and K as an aggregate

state variable. Recall that in this economy there is a continuum of households, where each

household realizes that it is small enough, so its decisions do not affect aggregates in the

economy. For this reason, prices in the economy w(K), r(K) depend on aggregate capital

K, which is independent on the choice of capital of the household k.

The last equation in this recursive formulation is called an aggregate law of motion,

and states the evolution of aggregate capital given by H. We assume that each household

has perfect foresight and can perfectly forecast how aggregate capital will evolve -that is,

every household knows H-, and knows that the evolution is independent of its own decisions.

Solving for a recursive competitive equilibrium will entail solving for a function H(K), as

well as for V (a, k,K), c(a, k,K), k′(a, k,K) and a′(a, k,K).

We can now define a recursive competitive equilibrium in this setting:

Definition 3 (Recursive Competitive Equilibrium). A recursive competitive equilibrium

are a value function V (a, k,K), policy functions c(a, k,K), k′(a, k,K), a′(a, k,K), pricing

functions w(K), R(K), r(K), and an aggregate law of motion H(K) such that:

1. Given (a, k,K) and functions w(K), R(K), r(K), H(K), the value function V solves

the problem of the household (1.100), with c(a, k,K), k′(a, k,K), a′(a, k,K) being the

corresponding policy functions

2. Given K, prices are such that:

w(K) = FL(K,L)

R(K) = FK(K,L)

r(K) = R(K)− δ
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3. Given K, the prices w(K), R(K), r(K) are such that the markets clear:

c(A,K,K) + k′(A,K,K) = (1− δ)K + F (K,L)

a′(A,K,K) = 0

4. For every K, the aggregate law of motion H(K) is consistent with the optimal choice

of households:

H(K) = k′(A,K,K)

The first two points in this definition are simply the fact that households and firms

maximize. The market clearing conditions are such that, in equilibrium, when individual

state variables are equal to aggregate state variables (k = K and a = A), markets clear. The

last condition states that the law of motion that households use to forecast the evolution

of capital coincides with the individual household’s decisions, such that the forecasting is

correct. Next section describes a method to numerically solve the problems described so

far.

1.6.3 Value Function Iteration

In Section 1.1.4, we could solve analytically the model and find closed-form solutions for all

the variables over time. However, this is uncommon as often, this type of models are much

more convoluted and do not allow for a closed-form solution. In this section we explain

the most common method to solve a Bellman equation, such as (1.98) and (1.100). This

method always works under certain conditions, that will be explained later. The main idea

of the value function iteration approach is to start with a guess of the value function for

the household, and iterate until the problem converges. The algorithm is as follows:

Algorithm 3 (Value Function Iteration).

1. Start with a guess for the value function V0(k) for the social planner’s problem (1.98).

For example, set V0(k) = 0, ∀k ≥ 0.

2. Compute an updated guess V1(k), by solving the right-hand side of the Bellman equa-
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tion using V0(k):

V1(k) = max
c,k′≥0

u (c) + βV0(k′) s.t.

c+ k′ = (1− δ)k + F (k, 1)

This can be computed directly, as now there is nothing unknown on the right-hand

side. For the particular case where V0(k) = 0, note that it suffices to find c and k′

that maximize:

u((1− δ)k + F (k, 1)− k′)

3. In general, for n ≥ 1, compute Vn+1(k) using the guess Vn(k) and the equation:

Vn+1(k) = max
c,k′≥0

u (c) + βVn(k′) s.t.

c+ k′ = (1− δ)k + F (k, 1)

If ‖Vn+1 − Vn‖ < ε, stop and set the policy functions c and k′ by:

{c(k), k′(k)} = arg max
c,k′≥0

u (c) + βVn(k′) s.t.

c+ k′ = (1− δ)k + F (k, 1)

Otherwise, set n = n+ 1 and repeat 3.

Under very general conditions, the algorithm described above works and the value func-

tion converges to a unique function V ∗. This means that we will be able to solve the model

and compute the value and policy functions, even though we don’t have a closed form

solution for them.

But, even if this algorithm seems simple, how can we perform this computation on

a computer? It turns out that even with a computer it is not possible to find an exact

solution, so the best we can aim for is to compute an approximation to the value function.

In particular, we will only be able to solve the problem for a finite number of points k. The

algorithm to approximate the solution is as follows:
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1. Set a grid for the state variables K = {k1, k2, . . . , km} of size m.

2. Set n = 0 and start with a guess for the value function V0(k), k ∈ {k1, . . . , km}.

3. For n ≥ 1, compute Vn+1(k), k ∈ {k1, . . . , km} using the Bellman equation:

Vn+1(k) = max
c,k′≥0

u (c) + βVn(k′) s.t.

c+ k′ = (1− δ)k + F (k, 1)

If
∑m

i=1 |Vn+1(ki)− Vn(ki)| < ε, stop and set the policy functions c and k′ by:

{c(k), k′(k)} = arg max
c,k′≥0

u (c) + βVn(k′) s.t.

c+ k′ = (1− δ)k + F (k, 1)

Otherwise, set n = n+ 1 and repeat 3.

For example, let’s take an economy where the utility function is logarithmic u(c) = ln(c)

and the production function takes the Cobb-Douglas form, such that F (k, 1) = kα. Assume

that the parameters are α = 0.3, β = 0.95, and δ = 1. Finally, the grid for capital choices

is given by the set K = {0.04, 0.08, 0.12, 0.16, 0.2}. The purpose is to compute the value

function at each of these capital grid points, such that we end up with an estimate of the

values of V (0.04), V (0.08), V (0.12), V (0.16), and V (0.2). The algorithm goes as follows:

1. Start with a guess V0(k) = 0 for all k ∈ K.

2. Define V1(k) by solving:

V1(k) = max
k′≥0

u
(
(1− δ)k + F (k, 1)− k′

)
+ βV0(k′)

= max
k′≥0

u
(
F (k, 1)− k′

)
Given that V0(k) = 0 for all k, it is optimal to choose the minimum level of capital in
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the grid, so k′(k) = 0.04 for all k ∈ K. Therefore:

V1(0.04) = u
(
0.040.3 − 0.04

)
= −1.077

V1(0.08) = u
(
0.080.3 − 0.04

)
= −0.847

V1(0.12) = u
(
0.120.3 − 0.04

)
= −0.715

V1(0.16) = u
(
0.160.3 − 0.04

)
= −0.622

V1(0.20) = u
(
0.200.3 − 0.04

)
= −0.55

3. Define V2(k) by solving:

V2(k) = max
k′≥0

u
(
(1− δ)k + F (k, 1)− k′

)
+ βV1(k′)

Now, given that V1(k) 6= 0, for every k ∈ K we have to evaluate the utility for every

k′ ∈ K. If the planner chooses k′ = 0.04:

V2(0.04) = u
(
0.040.3 − 0.04

)
+ βV1(0.04)

If the planner chooses k = 0.08:

V2(0.04) = u
(
0.040.3 − 0.08

)
+ βV1(0.08)

If the planner chooses k = 0.12:

V2(0.04) = u
(
0.040.3 − 0.12

)
+ βV1(0.12)

If the planner chooses k = 0.16:

V2(0.04) = u
(
0.040.3 − 0.16

)
+ βV1(0.16)

If the planner chooses k = 0.20:

V2(0.04) = u
(
0.040.3 − 0.20

)
+ βV1(0.20)

The optimal choice is given by the highest of these. In particular, for k = 0.04 it is

optimal to choose k′ = 0.08 and v2(0.08) = −1.710. This has to be done for each
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k ∈ K.

4. Continue until convergence. That is, until the point in which Vn+1 is sufficiently close

to Vn.

A natural question that arises is how to choose the grid for capital and how many points

m to use. There is no correct answer to this. A larger number of grid points improves the

accuracy obtained in the approximation of the value function V , but at the cost of a slower

computation speed.

Note also that there are values for k that are not feasible. Take problem (1.98). The

maximization on the right hand side of the equation is made over all k′ that satisfy two

constraints:

k′ ≥ 0

k′ ≤ (1− δ)k + F (k, 1)

The second inequality comes from the fact that c ≥ 0. This means that choosing levels of

capital outside the interval [0, (1−δ)k+F (k, 1)] is not feasible, so we can restrict the points

in the grid to being in that interval.

1.6.4 Dynamic Programming

This section is a review of the theorems that ensure that the value function iteration algo-

rithm converges, and states some properties of the value and policy functions.

COMPLETAR!!!!
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1.6.5 Problems

1. Write the recursive formulation of the social planner and household’s problems when

there is population growth

2. Write the recursive formulation of the social planner and household’s problems when

there is endogenous labor supply

3. Write the recursive formulation of the social planner and household’s problems when

there is exogenous technological growth

4. So far, we have assumed that markets are sequential, which means that every period

there are markets for goods, factors of production, and savings. At every t, households

receive wages wt, returns to last period’s capital (1− δ+Rt)kt, and returns to savings

(1 + rt)at, and choose consumption ct, capital kt+1, and savings at+1 for next period.

There is an equivalent way of studying markets, which will prove useful later in the

course. Assume agents start life at period t = 0 and have perfect information about

future income streams and prices in the economy. At t = 0, before any consumption is

realized or any income received, agents meet at the market and trade all future con-

sumption and capital accumulation streams, subject to a lifetime budget constraint.

Once trade has occurred, agents own perfectly enforceable contracts every period on

consumption and capital agreed in period t = 0.

Let pt denote the price, in terms of consumption in period t = 0, of one unit of

consumption to be delivered in period t (normalize p0 = 1). Agents act competitively,

which means that in period t = 0 they take future prices {pt}∞t=0 as given and beyond

their control when making decisions.

The problem of the household is the following:

max
ct,kt+1

∞∑
t=0

βtu (ct) s.t.

∞∑
t=0

pt(ct + kt+1) =
∞∑
t=0

pt((1− δ)kt + wt +Rtkt)

ct, kt+1 ≥ 0, k0 given
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The equilibrium in this environment is called an Arrow-Debreu (A-D) equilib-

rium.

(a) Solve for the A-D equilibrium

(b) What is the relationship between prices pt and the interest rate on risk-free bonds

rt?

(c) Show the equivalence between the sequential markets and the A-D equilibria

(Hint: use the no-Ponzi condition as stated in the class notes)

5. Let an economy where the period utility is given by u(c) = c1−σ

1−σ , and the production

function is F (k, l) = kαl1−α. Assume that individuals can only invest in capital (i.e.

there are no risk-free bonds) and let the parameters take the following values:

β = 0.99; σ = 2; δ = 0.05; α = 0.3;

(a) What is the value of steady state capital k∗, consumption c∗, investment i∗,

production y∗ and factor prices w∗ and R∗?

(b) Set T = 10 and compute the transitional dynamics using one of the methods

studied in class. Assuming that the initial condition is k0 = 0.1 · kss, plot

consumption ct, investment it, production yt, wages wt, rental rate Rt, and the

ratio it
yt

on the path to steady state

(c) How does the ratio it
yt

compare to the Solow model?

6. Let an economy where the period utility is given by u(c) = log(c), the production

function is F (k, l) = kαl1−α, and there is full depreciation of capital δ = 1. Guess

that the value function takes the form:

v(k) = A+B log(k)

In this environment, the social planner’s problem can be written as:

v(k) = max
k′

log(kα − k′) + βv(k′)

Solve the social planner’s problem to find the values of A and B, and find the policy

function k′(k). How does this model compare to the Solow model?
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7. Using the same functional forms as in question 2, assume that the economy is in

steady state. Solve the social planner’s problem using the value function iteration

method. Use a grid for capital of 500 equally spaced points, from 0.5kss to 1.5kss.

Plot the value function, and the capital and consumption policy functions.
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1.7 Growth Accounting

So far, we have assumed that output in the economy is produced with the use of two

factors, labor L and capital K, which, combined with the available technology A, produce

Yt = F (At,Kt, Lt) units of the final good. We would like to understand how does the growth

of each of the factors of production and technology contribute to the growth of output in

the economy. Is the economy growing due to an increase in the available capital? Is there

technological growth? The exercise of decomposing output growth into the growth rates

of technology, capital, and labor is called growth accounting, an was first proposed by

Solow (1957).

The neoclassical production function satisfies the assumptions described in Section 1.1,

which are mainly that the function F (K,L) is increasing in both arguments (FK , FL >

0), concave (FKK , FLL < 0, FKL > 0) and has constant returns to scale (F (λK, λL) =

λF (K,L)). With technological growth, the neoclassical production function can take the

form of F (AK,L) or F (K,AL), depending on whether the technological growth augments

capital or labor. If we assume that technical change is labor-augmenting and the production

function is Cobb-Douglas, then F (K,AL) can be rewritten as:

Yt = F (Kt, AtLt) = Kα
t (AtLt)

1−α = A1−α
t Kα

t L
1−α
t = ÃtF (Kt, Lt) (1.101)

where Ãt = A1−α
t . We denote Ât as the total factor productivity or TFP. Taking

logarithms, we can rewrite equation (1.101) as:

log(Yt) = log(Ãt) + α log(Kt) + (1− α) log(Lt)

Note that α and (1 − α) are the contributions of capital and labor to GDP. The variable

Ãt captures everything else that affects production different from labor and physical capi-

tal. The term log(Ãt) is commonly known as the Solow residual. This equation can be

rewritten in per-worker terms, using the fact that yt = F (kt, 1) = Ãtk
α
t :

log(yt) = log(Ãt) + α log(kt) (1.102)
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If we take equation (1.102) and subtract two consecutive periods:

log

(
yt+1

yt

)
= log

(
Ãt+1

Ãt

)
+ α log

(
kt+1

kt

)
(1.103)

Defining gy, gA, and gk as the growth rates of output per worker, total factor productivity,

and capital per worker, respectively, the following holds:

log (1 + gy) = log (1 + gA) + α log (1 + gk) (1.104)

To compute the total factor productivity Ãt and the contribution of capital to output

α, we need data on output Yt, capital Kt, and labor Lt to use equation (1.103), where

kt := Kt/Lt and yt := Yt/Lt. However, what does capital Kt stand for in the data? To

construct a time series of the capital stock in the economy, we can use the perpetual

inventory method which works as follows. Set an initial level of capital K0 for the base

year and assume a depreciation rate δ, which can be an estimate from the literature, usually

between 0.02 and 0.05. At every period t, the total investment in the economy at constant

prices It is reported in the national accounts, so we can construct the series of capital using

the capital accumulation equation:

Kt+1 = (1− δ)Kt + It

By recursively plugging in this equation at every t, we have that:

Kt = (1− δ)tK0 +

t−1∑
j=0

(1− δ)t−1−jIj

As t increases, the level of K0 becomes irrelevant, as it is multiplied by the term (1−δ)t,

which tends to zero as t increases. Once the series for capital {Kt}Tt=0 is constructed, we

have all the data to compute α and {Ãt}Tt=0. First, to compute α, we can estimate the

following regression:

log

(
yt+1

yt

)
= β0 + α log

(
kt+1

kt

)
+ εt+1

This will give us an estimate α̂ of the contribution of capital to GDP. A second approach to

obtain an estimate for α is to note that, assuming that markets are competitive and that
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production takes the Cobb-Douglas form:

rt = FK(Kt, Lt) = αÃtK
α−1
t L1−α

t = αÃtK
α−1
t L1−α

t · Kt

Kt
=
αÃtK

α
t L

1−α
t

Kt
=
αYt
Kt

⇒ α =
rtKt

Yt
(1.105)

Once we have an estimate for α, we can construct the time series for the TFP with:

log(Ãt) = α̂ log(kt)− log(yt) (1.106)

Using equation (1.104), the average growth of the TFP is given by:

gA = elog(1+gy)−α̂ log(1+gk) − 1 (1.107)

The contributions of TFP and capital per-worker growth to output growth are given by:

Contribution of TFP growth =
log(1 + gA)

log(1 + gy)

Contribution of capital growth = α̂ · log(1 + gA)

log(1 + gy)

There are multiple problems with growth accounting. First, the measure of capital used

aggregates different types of capital. However, this ignores that the quality of capital across

different sectors may evolve at a different rate, and this evolution is not considered in our

construction of the capital time series. Second, there are types of capital which are being

ignored, such as human capital or managerial capital. Certainly, the production functions

depend on the level of human capital of workers, on the quality of the managers, and so on.

Ignoring these inputs represents a problem. Third, there are market imperfections that we

are ruling out by assuming that markets are competitive. For instance, externalities and

public goods represent a problem to growth accounting. Finally, the perpetual inventory

method constructs the capital time series based on prices of capital over time, and not on

quality. This poses a problem as, for example, prices of computers have declined significantly

over the past years, while quality has increased. According to the perpetual inventory

method, which uses prices to construct the capital stock, this would imply a smaller growth
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in the stock of capital.

73



Chapter 2

Endogenous Growth Models

Sections 1.1-1.7 dealt mainly with the neoclassical growth model, where technological progress

was assumed exogenous. Namely, we assumed that labor productivity At grew exogenously

at a constant rate g, such that At+1 = (1 + g)At. Introducing this productivity growth al-

lowed the model to generate growth when the economy reached the balanced growth path.

That is, this model was able to explain long-run growth of economies. However, this model

is not useful to understand where does productivity growth come from. Why is there pro-

ductivity growth at all? What is the engine of productivity growth? Why does productivity

grow faster in some nations than in others? The purpose of this section is to try to under-

stand the source of productivity growth and what are its determinants. This will allow us

to talk about policies that governments can implement to increase productivity growth in

the long run.

The following subsections present different models in which there is long-run growth.

The first three sections do not explicitly model the creation of new technologies or the

expansion of the productivity At. Instead, these models remove some of the assumptions

made so far, which prevent the economy from experiencing long-run growth. Namely, in the

first two sections, we remove the assumption of decreasing returns to scale on capital. The

third section studies a model in which there are externalities in capital accumulation. The

last two sections present models in which the productivity growth is explicitly modelled.
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2.1 The AK Model

Up to now we have assumed that the production function F had constant returns to scale,

was strictly concave in both of its inputs K and L, and satisfied the Inada conditions.

The most commonly used production function that satisfies these assumptions is the Cobb-

Douglas function F (Kt, Lt) = Kα
t (AtLt)

1−α. In this section, we will assume that α = 1,

such that F (Kt, Lt) = AKt, where A is a constant technological parameter, often normalized

to 1. This function has constant returns on capital, as opposed to the diminishing returns to

capital that the previous Cobb-Douglas specification satisfied. Also, production now does

not depend on labor Lt, so wages are wt = 0. In equilibrium, the capital rental rate will be

exactly Rt = A for every t.

Solving the social planner’s problem yields the usual first order conditions:

u′(ct)

βu′(ct+1)
=

(1− δ +A)

(1 + n)

ct + (1 + n)kt+1 = (1− δ)kt +Akt

First, note that in this model there is generally no steady state. That is, there is no

point in which variables per-capita remain constant. For instance, for consumption to be

constant over time, we would need the following equality to hold:

1

β
=

(1− δ +A)

(1 + n)

This equation does not hold in general, unless the model parameters are specifically

chosen to make it hold. Having dismissed the existence of a steady state, let’s analyse the

cases in which the economy reaches a balanced growth path. That is, a point in which all

per-capita variables grow at a constant rate. Recall that the existence of a balanced growth

path requires that the utility function satisfies the CRRA assumption, in which case the

Euler equation becomes:

1

β

(
ct
ct+1

)−σ
=

(1− δ +A)

(1 + n)
(2.1)

This equation implies that the growth of consumption is always constant, such that ct+1 =
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(1 + γc)ct. In a balanced growth path, γc is then pinned down by the following equation:

1

β
(1 + γc)

σ =
(1− δ +A)

(1 + n)
(2.2)

That is, the growth rate of consumption along the balanced growth path is:

γc =

(
β · (1− δ +A)

1 + n

) 1
σ

− 1 (2.3)

This growth rate can be positive, even without technological growth. In particular, it is

positive when β is sufficiently large, given that individuals are very patient and choose

to save a large part of their income, so capital is rapidly accumulated over time and the

constant returns to scale ensure that production continues to grow linearly – the marginal

product of capital does not decrease over time. The same happens if depreciation δ is low,

as capital accumulates at a fast rate. Finally, if the households have a large elasticity of

substitution (if σ is close to 0), they will prefer to postpone consumption for the future by

accumulating more capital, leading to larger growth rates.

If we take logarithms to (2.3) and express β = 1/(1 + ρ):

log(1 + γc) =
1

σ
(log(1− δ +A)− log(1 + n)− log(1 + ρ))

If A− δ, ρ and n are sufficiently small (say, below 10%), the growth rate can be approx-

imated as:

γc ≈
1

σ
(A− δ − n− ρ) (2.4)

Note that, according to the Euler equation (2.1), the growth rate of consumption is

always constant, independently of the initial point. This means that in the AK model there

is no trasition to a balanced growth path; the economy is always on a balanced growth path.

Furthermore, as opposed to the neoclassical growth model, where all variables grow at the

rate of technological change g, in the AK model the growth rate of the economy depends

on other parameters: A, δ, n, ρ.
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2.2 Human Capital

Up to now, we have assumed that firms only use unskilled labor Lt and capital Kt as factors

of production, where labor is understood as the amount of physical workers. The limitation

of this is that the amount of labor is bounded by the population size and households cannot

increase their labor supply beyond that. Moreover, this assumption does not allow for

improvements in the quality of labor. Certainly, workers have become more productive over

the last century, given the increase in schooling and accumulation of human capital. This

section introduces a model with human capital, where households can invest in improving

the quality of labor they supply.

Assume that the production function depends on physical capital Kt and human capital

Ht, such that Yt = F (Kt, Ht), where F satisfies the same assumptions stated in Section

1.1. Here, we assume there is no technological growth. Households can accumulate human

capital in a similar way as they choose to accumulate physical capital. Namely, human

capital evolves according to a human-capital evolution equation:

Ht+1 = (1− δh)Ht + Iht

where δh is the depreciation rate of human capital and Iht are total investments in human

capital. As before, physical capital evolves according to the usual capital evolution equation,

where we denote It as total investments and δ as the depreciation rate of physical capital.

The aggregate resource constraint is thus:

Ct + It + Iht = (1− δ)Kt + (1− δh)Ht + F (Kt, Ht)

In this resource constraint we are implicitly assuming that human capital can be con-

verted with a linear technology into the final good, so total undepreciated capital (1−δh)Ht

can be consumed. The model can be re-expressed in per-capita terms, such that the resource

constraint is:

ct + (1 + n)kt+1 + (1 + n)ht+1 = (1− δ)kt + (1− δh)ht + F (kt, ht)

Where ht = Ht/Lt is the average human capital per worker in this economy. The social

planner’s problem is:
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max
ct,kt+1,ht+1

∞∑
t=0

βtu (ct) s.t.

∀t ∈ {0, 1, . . .} : ct + (1 + n)kt+1 + (1 + n)ht+1 = (1− δ)kt + (1− δh)ht + F (kt, ht)

ct, kt+1, ht+1 ≥ 0, h0, k0 given

Setting the appropriate lagrangean and solving for the optimality conditions yields:

[ct] : βtu′(ct)− λt = 0

[kt+1] : −(1 + n)λt + λt+1 (1− δ + Fk(kt+1, ht+1)) = 0

[ht+1] : −(1 + n)λt + λt+1 (1− δh + Fh(kt+1, ht+1)) = 0

[λt] : (1− δ)kt + (1− δh)ht + F (kt, ht)− ct − (1 + n)(kt+1 + ht+1) = 0

The Euler equations are:

u′(ct)

βu′(ct+1)
=

(1− δ + Fk(kt+1, ht+1))

(1 + n)

u′(ct)

βu′(ct+1)
=

(1− δh + Fh(kt+1, ht+1))

(1 + n)

These optimality conditions imply that, in the optimum, Fk(kt+1, ht+1)−δ = Fh(kt+1, ht+1)−

δh, so the social planner is indifferent between investing in human or physical capital. In

particular, using the same reasoning as in (1.71), we can re-write this condition as:

Fk

(
kt+1

ht+1
, 1

)
− δ = Fh

(
kt+1

ht+1
, 1

)
− δh (2.5)

In the optimum, the social planner will choose a physical-to-human capital ratio that sat-

isfies (2.5). In particular, the physical-to-human capital ratio should remain constant at

every period t, independently on whether the economy has reached a balanced growth path

or not. In addition, the fact that the physical-to-human capital ratio is constant, implies

that human and physical capital must grow at exactly the same rate. Denote by κ = kt+1

ht+1
,
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so the Euler equation is:

u′(ct)

βu′(ct+1)
=

(1− δ + Fk(κ, 1))

(1 + n)

On a balanced growth path, denote by γc the growth rate of consumption. Recall that we

must assume that the utility function takes the CRRA form, so γc is pinned down by:

1 + γc =

(
(1− δ + Fk(κ, 1))

(1 + n)

) 1
σ

If we assume that F takes the Cobb-Douglas form F (k, h) = kαh1−α, and that physical and

human capital depreciate at the same rate, such that δ = δh, the optimal physical-to-human

capital ratio is:

κ =
α

(1− α)

And the growth rate of the economy is:

γc =

((
1− δ + αα(1− α)1−α)

(1 + n)

) 1
σ

− 1

As in the AK model, depending on the parameters of the model, the economy can reach

a balanced growth path with positive growth (compare to equation (2.3)). The reason for

this result is that in this model, as in the AK model, there are constant returns to scale to

factors of production that can be accumulated. In previous sections this was not the case,

as labor could not be accumulated beyond population growth and there were diminishing

returns to scale on capital.

2.3 Externalities in Production

In this model, firms produce according to the usual production function F (Kt, AtLt), where

there is a labor-augmenting technology At. In this section, growth of the technology pa-

rameter At is driven endogenously within the model, as opposed to Section 1.4 where

technological growth was exogenous. In particular, we assume that technology At equals

the average capital used across firms: At = K̄t. This means that Yt = F (Kt, K̄tLt). If we

assume a Cobb-Douglas production function: Yt = Kα
t (K̄tLt)

1−α.
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Recall that in the economy there is a continuum of identical firms of size 1. This means

that every firm acts independently of each other, and the decision of each single firm does

not affect aggregate outcomes in the economy. In particular, if a firm decides to increase

its capital, the average capital used by firms in the economy stays unmodified at the same

level. Average capital is affected only when a set of firms of positive measure change their

capital. Therefore, every firm takes average capital in the economy as given and beyond its

control.

Given these assumptions, the production function has constant returns to scale at the

firm level. If a single firm decides to increase all factors of production by a proportion

λ, production increases in that same proportion: F (λKt, At(λLt)) = λF (Kt, AtLt). This

happens because the decision of a single firm does not affect aggregate capital, so increasing

labor and capital by a factor λ leaves K̄t unchanged.

However, note that from the social planner’s perspective, if the factors of production of

all firms increase by a factor λ, total production increases more than that, as average capital

in the economy will also increase. That is, if the social planner increases capital used by

firms by a factor λ, not only does Kt increases, but also K̄t. In the case of a Cobb-Douglas

production function:

F (λKt, λK̄tλLt) = (λKt)
α(λK̄tλLt)

1−α = λ2−αKα
t L

1−α
t > λF (Kt, K̄tLt)

This means that the social planner faces increasing returns to scale on its factors or pro-

duction. This is driven by the fact that average capital in the economy increases the

productivity of labor, so increasing capital has an additional indirect effect in the economy,

beyond the additional production of that capital.

What drives the difference is that there is an externality driven by capital accumulation.

When firms accumulate more capital, they do not internalize the fact that increasing average

capital also increases the productivity of all other firms in the economy. Therefore, the level

of capital chosen privately by each firm is below the socially optimal level. In contrast, the

social planner knows that increasing capital has a direct effect, by increasing production,

but also an indirect effect, by increasing productivity. Therefore, the social planner chooses

the socially optimal level of capital. In this context, the welfare theorems do not hold, so

the allocations that solve the social planner’s problem and the competitive equilibrium are
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not equal to each other.

2.3.1 Social Planner’s Problem

The social planner knows that there is a continuum of firms of size 1 so that, if all firms

choose capital Kt, the average capital is K̄t = Kt. Therefore, the production function

becomes:

Yt = F (Kt, K̄tLt) = Kα
t (K̄tLt)

1−α = KtL
1−α
t

Assume there is no population growth, such that Lt = 1 for all t. We can write total

per-capita production as yt = kt. This is exactly the AK model, with A = 1 and population

growth n = 0. This means that along a balanced growth path all variables grow at the rate:

γc = (β(2− δ))
1
σ − 1

2.3.2 Competitive Equilibrium

In a competitive equilibrium, households solve the same problem as in Section 1.101. Recall

that if we want to study balanced growth paths, we have to assume that u = c1−σ

1−σ , so the

household’s optimality conditions are:

1

β

(
ct+1

ct

)σ
= 1− δ +Rt+1

ct + kt+1 + at+1 = (1− δ)kt + wt +Rtkt + (1 + rt)at

The firm’s problem is:

max
Kt,Lt

Kα
t (K̄tLt)

1−α − wtLt −RtKt

So prices of factors of production are:

Rt = αKα−1
t (K̄tLt)

1−α

wt = (1− α)Kα
t K̄

1−α
t L−αt
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In equilibrium, K̄t = Kt and Lt = 1, so equilibrium prices become:

Rt = α

wt = (1− α)Kt

Plugging these equilibrium prices in the household’s Euler equation yields:

1

β

(
ct+1

ct

)σ
= 1− δ + α

So the growth rate is:

γc = (β(1− δ + α))
1
σ − 1

The growth rate on a competitive equilibrium is smaller than under the social planner’s

solution, given that 1− δ + α < 2− δ, as α < 1. The reason is that, given that household’s

do not internalize that their own capital accumulation increases overall productivity in the

economy, they under-accumulate capital. In contrast, the social planner internalizes this

and choose the socially optimal level of capital.

In this model, there is long-run growth because, even though households face decreasing

returns to capital accumulation, there are constant returns to capital accumulation in the

economy. Therefore, capital can be accumulated at a constant rate, generating production

growth at that same rate in the long run.
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2.4 R&D Models - Romer (1990)

This section describes the first model in which productivity growth is explicitly modelled. In

this setting, productivity At is a function of the number of different varieties of intermediate

goods used in production.

Every period t, the economy is composed of Nt + 1 production sectors: a firm that

produces the final good Yt, and Nt firms that produce intermediate goods X1, . . . , XNt .

The final good production firm uses as inputs each of the Nt intermediate goods and labor,

to produce Yt according to the production function: Yt =
(∑Nt

i=1X
α
it

)
L1−α
t . The final good

is produced in a perfectly competitive market and is used for consumption and investment.

The problem of the final good firm is:

max
X1,...,XNt ,Lt

(
Nt∑
i=1

Xα
it

)
L1−α
t −

Nt∑
i=1

PitXit − wtLt (2.6)

Where Pit is the price of the intermediate good Xi in period t. The optimality conditions

for the final good firm are:

wt = (1− α)

(
Nt∑
i=1

Xα
it

)
L−αt (2.7)

Pit = αXα−1
it L1−α

t , i ∈ {1, . . . , Nt} (2.8)

Intermediate good firms operate on a monopolistic market. To produce good Xit, the

intermediate producer uses the final good as an input for production and faces a constant

marginal cost of production equal to 1. Every period the producer of Xit chooses the price

of its good Pit, to solve:

πit = max
Pit

(Pit − 1)Xit(Pit) (2.9)

Where Xit(Pit) is the demand function for the intermediate good Xit, taken as given by the

monopolist. Namely, the demand function can be obtained from (2.8):

Xit(Pit) =

(
α

Pit

) 1
1−α

(2.10)
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So the intermediate good producer solves:

πit = max
Pit

(Pit − 1)

(
α

Pit

) 1
1−α

(2.11)

Which yields the optimality condition for the intermediate good producer i:

Pit =
1

α
⇒ πit = (1− α)α

1+α
1−α (2.12)

Households can engage in the creation of a new intermediate good sector j, beyond the

existing ones 1, . . . , Nt. The creation of a new sector has a fixed cost equal to η > 0, which

has to be paid at period t, and will allow the household to produce the new intermediate

good Xj starting from period t+ 1. The owner of sector j has lifetime monopolistic power

over that sector, which means that the returns of creating a new sector j are equal to∑∞
s=t+1

(∏s
l=t

1
1+rl

)
πj,s. Given that the production of intermediate goods generates pos-

itive profits, households will be attracted to create new sectors as long as total profits of

owning a new sector are larger than the cost of creating the sector. The problem of the

household is:

max
ct,at+,Nt+1

∞∑
t=0

βtu(ct), s.t. (2.13)

∀t ∈ {0, 1, . . .} : ct + at+1 = wt + (1 + rt)at +

Nt∑
i=1

πit − η(Nt+1 −Nt)

ct, Nt+1 ≥ 0, a0 = 0

Given that profits of each intermediate good firm are πit = (1 − α)α
1+α
1−α , the household’s

problem can be re-written as:

max
ct,at+,Nt+1

∞∑
t=0

βtu(ct), s.t. (2.14)

∀t ∈ {0, 1, . . .} : ct + at+1 = wt + (1 + rt)at + (1− α)α
1+α
1−αNt − η(Nt+1 −Nt)

ct, Nt+1 ≥ 0, a0 = 0

Note that in this environment households can move wealth across time through two different

channels. They can invest in risk-free bonds at+1, or they can invest in the creation of new

84



intermediate goods Xjt, which generates profits every period in the future. Solving problem

(2.14) yields the following two Euler equations for the household:

u′(ct)

βu′(ct+1)
= 1 + rt+1 (2.15)

u′(ct)

βu′(ct+1)
= 1 +

(1− α)α
1+α
1−α

η
(2.16)

These two equations imply a non-arbitrage condition between risk-free assets and the cre-

ation of new intermediate sectors, such that:

rt =
(1− α)α

1+α
1−α

η
(2.17)

That is, the returns to an additional risk-free bond at+1 are equal, in equilibrium, to the

returns of creating a new sector, net of the cost of creating that sector η. On a balanced

growth path, where the interest rate is constant rt = r∗, this non-arbitrage condition is

equivalent to a zero-profit condition on the creation of a new intermediate good sector,

given by the free entry condition:

η︸︷︷︸
Cost of creating new sector

=
∞∑

s=t+1

(
s∏
l=t

1

1 + r∗

)
πjt︸ ︷︷ ︸

Benefit of creating new sector

(2.18)

That is, in equilibrium the household is indifferent between accumulating an additional

risk-free bond, or creating a new intermediate good sector. Along a balanced growth path,

the growth rate of consumption is given by:

γc =

(
β

(
1 +

(1− α)α
1+α
1−α

η

))1/σ

− 1 (2.19)

Note that in this economy the welfare theorems do not hold, given that intermediate good

firms have monopolistic power. This means that intermediate goods are produced below the

socially-optimal level. The social planner produces intermediate goods up to the socially

optimal level of production, achieving larger growth rates in the long run.
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Chapter 3

Models with Uncertainty

The models we have studied so far have no uncertainty at all. However, many of the

interesting questions in Economics arise because of the existence of uncertainty. People save

as a precaution in case of receiving negative income shocks in the future, households choose

the amount of risk they want to bear to optimally choose their portfolio, the decision to buy

a house or rent depends partly on the behavior of house prices, and so on. Incorporating

uncertainty allows economists to model a wide variety of economic problems.

Although in real life there are many different sources of uncertainty, in our models we

abstract from different sources and study some particular channels. The most common

sources of uncertainty in economic models are productivity shocks, that directly affect the

technology of production, shocks to household’s preferences, which affect the tastes for

different goods, or shocks to policy, such as shocks to government expenditures.

3.1 Representation of Risk

In this section we formalize the concept of risk and the information space of agents. Assume

there is a stochastic variable z in the economy. That is, households have uncertainty

regarding the realization of z every period in the future. This stochastic variable may

represent different variables. For example, z can represent the realization of the firm’s

productivity, such that: F (z, k, l) = ezkαl1−α; the realization of a taste shock, such that

u(ct) = zc1−σ
t /1− σ; or the realization of government spending, such that gt = z. Assume

that z ∈ Z, such that Z is the set of all possible events or outcomes that can occur. Although

easily generalizable, we will assume henceforth that the stochastic variable z is discrete and,
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without loss of generality, the set Z = {1, 2, . . . , n} is finite.

We denote a history of shocks up to period t as zt = (z0, z1, . . . , zt), where the superscript

represents a history, or a vector of shocks, and the subscript represents a realization of the

shock in that period. We also denote the set of all possible histories of shocks up to period

t as Zt = Z ×Z × . . .×Z. The probability of observing history zt in period t is π(zt), such

that:

0 ≤ π(zt) ≤ 1,
∑
zt∈Zt

π(zt) = 1

In the models presented here, we assume that households observe current and past real-

izations of the shocks, and know the probability distribution of shocks. This means that

in period t the household knows the realized zt ∈ Zt, and the probabilities π(zj) for all

j ≥ t. The tree in Figure 3.1 illustrates the possible realizations of histories over time,

where Z = {1, 2} and there are two periods.

z0

z1 = (2)

z2 = (2, 2)

π(z1 = 2, z2 = 2)

z2 = (2, 1)
π(z1 = 2, z2 = 1)

π(z1 = 2)

z1 = (1)

z2 = (1, 2)

π(z1 = 1, z2 = 2)

z2 = (1, 1)
π(z1 = 1, z2 = 1)

π(z1
= 1)

Figure 3.1: Tree of possible histories zt ∈ Zt.

Note that the number of possible histories grows exponentially over time. If |Z| denotes

the number of possible outcomes in the set Z, the number of possible histories up to period

t is equal to |Z|t. This makes the models with uncertainty computationally much more

complex than the models in past sections.

Every period, households take their decisions after having observed the realization of the
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shock history zt. This means that, every period, all endogenous variables in the economy can

potentially depend on zt. For example, the optimal consumption chosen by the household

will probably be low if the firm’s productivity realizations up to period t have been zt =

{1, 1, . . . , 1} – that is, if productivity takes the lowest possible values every period up to t.

In contrast, consumption will probably be higher if the realizations of the shocks up to t

are zt = {n, n, . . . , n}. Therefore, when describing the household and firm’s problem, we

must explicitly denote endogenous variables as functions of zt. For example, after observing

history zt, the household will choose consumption ct(z
t) . In general, a random variable x

that depends on the shock history zt will be denoted as xt(z
t). Given that the probability

distribution of shocks is known by agents in the economy, the expected value of x in period

t can be computed as:

E0xt(z
t) =

∑
zt∈Zt

π(zt)xt(z
t)

Similarly, we can compute the expected utility at period t as:

E0u(ct(z
t)) =

∑
zt∈Zt

π(zt)u(ct(z
t))

Finally, we denote by Zt|zt−s the set of all histories up to period t that follow the history

zt−s. Using Bayes’ rule, the conditional expectation of xt(z
t), given that history zt−s has

been realized, is:

Et−s(xt(zt)|zt−s) =
∑

zt∈Zt|zt−s

π(zt)

π(zt−s)
x(zt)

3.2 Social Planner’s Problem

In this section, assume that the stochastic variable z ∈ Z represents productivity shocks,

such that Yt = eztF (Kt, Lt), where F satisfies the same conditions as in past sections. For

simplicity we assume there is no population growth, so Lt(z
t) = 1, for all zt ∈ Zt and t ≥ 0,

and Yt = eztF (Kt, 1).

Every period t, the social planner (and agents in the economy) observes the realization

of the productivity shock zt, as well as the history of past shocks zt, but does not know
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what the future realizations will be. The planner only knows the stochastic process from

which the realizations are drawn, and assigns probabilities π(zt) to each possible history in

the future.

The social planner chooses optimal consumption and investment decisions that are con-

tingent on the realization of the shock, to maximize the expected lifetime utility:

E0

∞∑
t=0

βtu(ct(z
t)) =

∞∑
t=0

∑
zt∈Zt

π(zt)βtu(ct(z
t))

As already described, optimal choices for consumption, savings, and capital are functions

of the shock history zt, not only of the present realization of the shock zt. For example,

the choices of the planner are going to be different after five consecutive periods of negative

productivity shocks, than after just one period of low productivity. In this sense, what

matters are shock histories, rather than the single realization of the shock in a period.

The social planner’s problem is a natural extension of problem (1.6):

max
ct(zt),kt+1(zt)

t≥0 zt∈Zt

E0

∞∑
t=0

βtu(ct(z
t)) =

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) s.t. (3.1)

ct(z
t) + kt+1(zt) = (1− δ)kt(zt−1) + eztF (kt(z

t−1), 1)

ct(z
t), kt+1(zt) ≥ 0, k0 given

Various things are worth noting. First, the planner chooses at period t and history zt, the

capital to take to t+1, so kt+1(zt) is a function of zt. For this reason, the capital kt that the

individual owns in period t was chosen the period before, so kt(z
t−1) is a function of zt−1,

which is the history that precedes zt. Second, given that capital is not state-contingent,

kt+1(zt) appears at t + 1 in every single history that follows after zt, so the first-order

condition for [kt+1(zt)] will sum over all possible histories zt+1|zt. What happens is that

now the individual chooses a capital amount kt+1(zt) in period t, without knowing what the

realization of zt+1 is going to be. Therefore, the first order condition sums over all possible

realizations of z in period t + 1. Third, the choices of ct and kt+1 depend on the whole

history zt and not only on the last realization of the shock zt. Finally, if the size of the set

of possible realizations Z is large, the number of possible histories grows exponentially with

time. In this sense, computing such a model might be infeasible. Later sections describe the
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computation in this context. The lagrangean associated with the social planner’s problem

is:

L =
∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) +

∞∑
t=0

∑
zt∈Zt

λ(zt)
[
(1− δ)kt(zt−1) + eztF (kt(z

t−1), 1)+

−ct(zt)− kt+1(zt)
]

The social planner optimizes with respect to consumption and capital accumulation at

every possible state of the world. That is, the first order conditions must be taken with

respect to c and k at every possible zt. In equilibrium, for every zt ∈ Zt and every t ≥ 0:

[ct(z
t)] : βtπ(zt)u′(ct(z

t))− λ(zt) = 0

[kt+1(zt)] : −λ(zt) +
∑

zt+1∈Zt+1|zt
λ(zt+1)

(
1− δ + ezt+1Fk(kt+1(zt), 1)

)
= 0

[λ(zt)] : (1− δ)kt(zt−1) + eztF (kt(z
t−1), 1)− ct(zt)− kt+1(zt) = 0

Which yields the following optimality conditions, for every zt ∈ Zt and every t ≥ 0:

Euler eq: u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1− δ + ezt+1Fk(kt+1(zt), 1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1))

Resource cons: ct(z
t) + kt+1(zt) = (1− δ)kt(zt−1) + eztF (kt(z

t−1), 1)

Transv. cond.: lim
t→∞

βt
∑
zt∈Zt

π(zt)u′(ct(z
t))kt+1(zt) = 0

Init. cond.: k0 given

The Euler equation can be re-written as:

u′(ct(z
t)) = βEt

(
1− δ + eztFk(kt(z

t−1), 1)u′(ct+1(zt+1))|zt
)
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Where Et is the expectations operator that includes all the information up to period t.

This Euler equation relates consumption in period t, with expected consumption in period

t+ 1. This is a consequence of the fact that the social planner cannot transfer wealth from

zt to a specific state zt+1; if the planner chooses capital kt+1(zt), no matter what zt+1 is,

the same amount of capital will be available at t+ 1.

Note that in this environment we cannot talk about a steady state, as variables are

expected to move stochastically every period. That is, there is no “long-run” notion in

which the economy is expected to settle and variables to converge, given the nature of the

stochastic process. In the example above, it is expected that, even in the long-run, the

stochastic productivity will follow the same stochastic process.

Next section describes a competitive equilibrium in this environment. As in the neo-

classical growth model without uncertainty, given the lack of frictions, the allocations of

the social planner’s problem are the same as those of the competitive equilibrium, which

are the subject of next section.

3.3 Competitive Equilibrium: Incomplete Markets

As in Section 1.1, we assume that households have access to two assets to transfer wealth

from t to t + 1: physical capital k and risk-free bonds a. In this section, we assume that

these assets are not state-dependent, which means that the amount of assets owned does

not depend on the realization of the shock z. This will become clear once we formulate the

household’s problem. The problem of the household is a natural extension of the problem

without uncertainty:

max
ct(zt),at+1(zt),kt+1(zt)

t≥0 zt∈Zt

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) s.t. (3.2)

ct(z
t) + at+1(zt) + kt+1(zt) =

(1− δ)kt(zt−1) + wt(z
t) +Rt(z

t)kt(z
t−1) + (1 + rt(z

t))at(z
t−1)

at+1(zt) ≥ −Ā

ct(z
t), kt+1(zt) ≥ 0, k0, a0 = 0 given

Here we are assuming that the individual chooses capital kt+1(zt) and risk-free assets
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at+1(zt) at period t and history zt, to take to period t+ 1 irrespective of the realization of

the shock at t + 1. That is, no matter what the realization zt+1 is at t + 1, the household

will wake up with kt+1(zt) and at+1(zt). This means that the household cannot insure

against the shocks and the returns to its investment are not state-contingent. We refer to

this as an incomplete markets set-up, as there are no insurance markets for every state

of the world. Later, we will discuss how a market in which the individual can insure against

different realizations of the shock would look like.

In the case where the shock affects firm’s productivity, why are the choices of the house-

hold dependent on the realization of the shock? Even though the budget constraint is not

directly affected by zt, there are general equilibrium effects that affect household choices. As

can be expected, the wages w and returns to investments r, in equilibrium, will be pinned

down by:

wt(z
t) = eztFl(kt(z

t), lt(z
t))

Rt(z
t) = eztFk(kt(z

t), lt(z
t))

This means that a low productivity shock will imply low wages and low returns to invest-

ment, which will affect household’s decisions. Something similar will happen when we have

shocks that affect directly the household’s decisions, such as a taste shock. In that case,

even though the firm might not be directly affected by the shock, in equilibrium it will.

The firm’s problem can also be naturally extended to the case with uncertainty:

πt(z
t) = max

kt(zt),lt(zt)
yt(z

t)− wt(zt)lt(zt)− rt(zt)kt(zt)

= max
kt(zt),lt(zt)

eztF (kt(z
t), lt(z

t))− wt(zt)lt(zt)−Rt(zt)kt(zt) (3.3)

Definition 4 (Competitive Equilibrium). A competitive equilibrium are allocations for the

household {ct(zt), kst+1(zt), at+1(zt)}∞t=0,zt∈Zt, allocations for the firm {kdt (zt), lt(z
t)}∞t=0,zt∈Zt,

and prices {wt(zt), Rt(zt), rt(zt)}∞t=0,zt∈Zt such that:

1. Given k0 and prices {wt(zt), Rt(zt), rt(zt)}∞t=0,zt∈Zt, the allocations {ct(zt), kst+1(zt), at+1(zt)}∞t=0,zt∈Zt

solve the optimization problem of the household, described by (3.2).
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2. At every t ∈ {0, 1, . . .} and zt ∈ Zt, given prices wt(z
t), Rt(z

t), the allocations

kdt (zt), lt(z
t) solve the optimization problem of the firm, described by (3.3)

3. Markets clear for all t ≥ 0 and zt ∈ Zt:

(a) Goods: ct(z
t) + kst+1(zt) = (1− δ)kst (zt−1) + F (kdt (zt), lt(z

t))

(b) Labor: lt(z
t) = 1

(c) Capital: kdt (zt) = kst (z
t−1)

(d) Risk-free bonds: at(z
t−1) = 0

To solve for the equilibrium, let’s solve first the household’s problem. The associated

lagrangean is:

L =

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) +

∞∑
t=0

∑
zt∈Zt

λ(zt)
[
(1− δ)kt(zt−1) + wt(z

t) +Rt(z
t)kt(z

t−1)+

(1 + rt(z
t))at(z

t−1)− ct(zt)− kt+1(zt)− at+1(zt)
]

The first order conditions are:

[ct(z
t)] : βtπ(zt)u′(ct(z

t))− λ(zt) = 0

[kt+1(zt)] : −λ(zt) +
∑

zt+1∈Zt+1|zt
λ(zt+1)

(
1− δ +Rt+1(zt+1)

)
= 0

[at+1(zt)] : −λ(zt) +
∑

zt+1∈Zt+1|zt
λ(zt+1)

(
1 + rt+1(zt+1)

)
= 0

[λ(zt)] : (1− δ)kt(zt−1) + wt(z
t) + rt(z

t)kt(z
t−1) + πt(z

t)− ct(zt)− kt+1(zt) = 0

These conditions are analogous to the first order conditions of problem (1.17) of the house-

hold without uncertainty, except for one thing: as in the social planner’s problem, given

that capital and risk-free bonds are not state-contingent, kt+1(zt) and at+1(zt) appear at

t+ 1 in every single history that follows after zt, so the conditions [kt+1(zt)] and [at+1(zt)]

sum over all possible histories zt+1|zt. Combining these conditions, the Euler equations
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become:

u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1− δ +Rt+1(zt+1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1))

u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1 + rt+1(zt+1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1))

Which, in terms of expectations become:

u′(ct(z
t)) = βEt

[(
1− δ +Rt+1(zt+1)

)
u′(ct+1(zt+1))|zt

]
(3.4)

u′(ct(z
t)) = βEt

[(
1 + rt+1(zt+1)

)
u′(ct+1(zt+1))|zt

]
(3.5)

Note that now, as opposed to the case without uncertainty, there is no non-arbitrage con-

dition that equates the returns to capital and assets. On average, returns to both assets

are such that the marginal utilities at t and t + 1 are related though these equations, but

returns of both assets need not be the same at every state of the world.

Given a sequence of prices {wt(zt), rt(zt)}∞t=0, the allocations {ct(zt), kt+1(zt)}∞t=0 that

satisfy the following equations characterize the optimal solution for the household:

Euler eq: u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1− δ +Rt+1(zt+1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1))

u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1 + rt+1(zt+1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1))

Bud. const: ct(z
t) + at+1(zt) + kt+1(zt) =

(1− δ)kt(zt−1) + wt(z
t) +Rt(z

t)kt(z
t−1) + (1 + rt(z

t))at(z
t−1)

Transv. cond.: lim
t→∞

∑
zt∈Zt

βtπ(zt)u′(ct(z
t))kt+1(zt) = 0

lim
t→∞

∑
zt∈Zt

βtπ(zt)u′(ct(z
t))at+1(zt) = 0

Init. cond.: k0, a0 = 0 given
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Using the optimality conditions of the households and firms, it can be shown that the

solution to the social planner’s problem and the competitive equilibrium are equivalent.

Next section describes an environment with complete markets.

3.4 Competitive Equilibrium: Complete Markets

In last section, we assumed that households could only move wealth across time through a

risk-free bond a, or capital k that were not state-contingent. That is, the household could

not buy different units of bonds or capital for different states of the world in the future.

However, financial markets are usually richer and individuals can buy assets that pay

only in certain states of the world. For example, health insurance is a state-contingent

contract. If the individual gets sick, the insurer will pay any medical expenses. If the

individual does not get sick, the insurer does not pay anything. This means that insurance

is a financial asset bought in period t, that pays a different amount in every state of the

world in t+ 1.

There are more complex financial instruments, such as options and derivatives, that are

also state-contingent. For example, a call option gives the owner the opportunity to buy

an asset at a predetermined price when the market price of the asset is above a specific

threshold. This means that, under certain states of the world, namely when the price of the

underlying financial asset is high, the owner of the option will be able to buy at a cheaper

price and will receive the difference between the market price and the predetermined price

in the option. That is, an option pays a positive payoff in states of the world where the

price of the underlying asset is large, and zero otherwise.

A market in which individuals can buy perfectly state-contingent assets, or in which

there exists an asset for every state of the world, is a complete market. In real life,

markets are not perfectly complete, but developed financial markets such as the U.S. are

closer to being a complete market.

An environment with complete asset markets is not very different than the markets we

have analyzed so far. The only difference is that now agents have access to state-contingent

assets. For exposition, let’s denote the state-contingent assets as b. If at zt the individual

buys bt+1(zt+1) units of the bond in period t at a price per unit q(zt, zt+1), where zt+1 is a

history that follows zt, the individual receives bt+1(zt+1) if the history zt+1 is realized, and
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zero otherwise. The state-contingent financial assets b are often called Arrow-securities.

The problem of the household becomes:

max
ct(zt),kt+1(zt),{bt+1(zt+1)}zt+1∈Z

t≥0 zt∈Zt

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) s.t. (3.6)

ct(z
t) + kt+1(zt) +

∑
zt+1∈Z

q(zt, zt+1) · bt+1(zt, zt+1) =

(1− δ)kt(zt−1) + bt(z
t) + wt(z

t) +Rt(z
t)kt(z

t−1)

ct(z
t), kt+1(zt) ≥ 0, bt+1(zt+1) ≥ −B, k0, b0 = 0 given

In this problem, the individual buys state-contingent assets for every possible state of the

world tomorrow, so the total expenditures include the sum of the expenditures on q(zt, zt+1)·

bt+1(zt, zt+1) for every possible state zt+1 at t + 1. Also, on the state of the world zt, the

household receives the amount bt(z
t), which is the number of bonds bought in period t− 1

that pay only if zt is realized.

The associated lagrangean is:

L =

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t))+

∞∑
t=0

∑
zt∈Zt

λ(zt)

(1− δ)kt(zt−1) + bt(z
t) + wt(z

t) +Rt(z
t)kt(z

t−1)

−ct(zt)− kt+1(zt)−
∑

zt+1∈Z
q(zt, zt+1) · bt+1(zt, zt+1)
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The first order conditions are:

[ct(z
t)] : βtπ(zt)u′(ct(z

t))− λ(zt) = 0

[kt+1(zt)] : −λ(zt) +
∑

zt+1∈Zt+1|zt
λ(zt+1)

(
1− δ +Rt+1(zt+1)

)
= 0

[bt+1(zt+1)] : −λ(zt)q(zt, zt+1) + λ(zt+1) = 0

[λ(zt)] : (1− δ)kt(zt−1) + bt(z
t) + wt(z

t) +Rt(z
t)kt(z

t−1)

−ct(zt)− kt+1(zt)−
∑

zt+1∈Z
q(zt, zt+1) · bt+1(zt, zt+1) = 0

With the presence of state-contingent assets, we have an additional optimality condition

that pins down the price for the state-contingent assets, or Arrow securities:

u′(ct(z
t)) = β · π(zt+1)

π(zt)

1

q(zt, zt+1)
· u′(ct+1(zt+1)), ∀zt+1 ∈ Zt+1|zt, ∀zt ∈ Zt (3.7)

Note that this is nothing different than an Euler equation that relates consumption at history

zt in period t, with consumption at every posible history zt+1 in period t+ 1. As opposed

to the Euler equation with incomplete markets, given by equations (3.4) and (3.5), in which

marginal utility at t is related to expected marginal utility at t+ 1, with complete markets

there is an Euler equation for every state in t + 1 so there is no expectation operator E.

Given that the individual is able to perfectly insure against every state of the world at t+1,

the household can perfectly smooth consumption over states of the world. The household’s

problem is completely characterized by the following equations for all t ∈ {0, 1, . . .}, and for
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all zt ∈ Zt:

u′(ct(z
t)) = β

∑
zt+1∈Zt+1|zt

(
1− δ +Rt+1(zt+1)

) π(zt+1)

π(zt)
u′(ct+1(zt+1)) (3.8)

u′(ct(z
t)) = β · π(zt+1)

π(zt)
· 1

q(zt, zt+1)
u′(ct+1(zt+1)) (3.9)

ct(z
t) + kt+1(zt) +

∑
zt+1∈Z

q(zt, zt+1) · bt+1(zt, zt+1) =

(1− δ)kt(zt−1) + bt(z
t) + wt(z

t) +Rt(z
t)kt(z

t−1) (3.10)

Moreover, given that capital is still non state-contingent, whereas Arrow securities are,

there is no non-arbitrage condition linking the returns to capital to the returns of assets.

By combining (3.8) and (3.9), the most we can get is:

1 =
∑

zt+1∈Zt+1|zt

(
1− δ +Rt+1(zt+1)

q(zt, zt+1)

)
(3.11)

The definition of an equilibrium is analogous to the equilibrium in the incomplete markets

case, with the only difference that now there is a market clearing condition for each of the

Arrow securities, given that each is an independent asset. Again, since we are assuming

that there is a representative agent, in equilibrium there is zero net-supply of each of the

Arrow securities.

3.5 Arrow-Debreu Markets

Recall the environment defined in Problem 4 in Section 1.6. Without uncertainty, we were

able to show that the Arrow-Debreu and the sequential formulations were equivalent to

each other. In this section, we will define the Arrow-Debreu environment. It turns out that

the Arrow-Debreu environment with uncertainty is equivalent to the sequential markets

environment with complete markets. If households have access to Arrow securities, or

state-contingent bonds, the equilibrium allocations will be equivalent to an Arrow Debreu

equilibrium.

Assume agents have perfect information about the prices w(zt), R(zt) at every state of

the world zt for every t ≥ 0. That is, agents have perfect foresight about their income
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streams in any state of the world. At t = 0, before any consumption is realized or any

income received, agents meet at the market and trade all future consumption and capital

accumulation streams, at every state of the world, subject to a lifetime budget constraint.

Once trade occurs in period t = 0, agents own perfectly enforceable contracts every period to

receive/deliver the consumption and capital quantities agreed upon in period t = 0. Denote

the price of the consumption good delivered in state zt, in terms of period 0 consumption,

as p(zt). We normalize p0 = 1. Agents act competitively, so when trading occurs they take

prices {p(zt)}zt∈Zt,t≥o as given and beyond their control. The problem of the household is:

max
ct(zt),kt+1(zt)

t≥0 zt∈Zt

∞∑
t=0

∑
zt∈Zt

βtπ(zt)u(ct(z
t)) s.t. (3.12)

∞∑
t=0

∑
zt∈Zt

p(zt)(ct(z
t) + kt+1(zt)) =

∞∑
t=0

∑
zt∈Zt

p(zt)((1− δ)kt(zt−1) + wt(z
t) +Rt(z

t)kt(z
t−1))

ct(z
t), kt+1(zt) ≥ 0, k0 given

The optimality conditions yield the following Euler equation:

u(ct(z
t)) = β

π(zt+1)

π(zt)

p(zt)

p(zt+1)
u′(ct+1(zt+1)) (3.13)

By normalizing the price at t = 0 to 1, we can derive an expression for prices:

p(zt) = βtπ(zt)
u′(ct(z

t))

u′(c0(z0))
(3.14)

Note that the allocations that solve the Arrow-Debreu and the sequential formulation with

complete markets are equivalent, and the prices of Arrow q securities are related to p

according to:

q(zt, zt+1) =
p(zt+1)

p(zt)
(3.15)

On the Arrow-Debreu environment, households can buy consumption and capital for specific

states of the world. This means that they can insure by acquiring different bundles for

different realizations if the shock z. This is equivalent to the complete markets environment,

where households can transfer wealth across time and states of the world.
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3.6 Markov Processes

In Section 1.6, we expressed the sequential household’s problem in recursive form, which

simplified the computation of the model. Now that we added uncertainty, it is useful to

study the conditions under which the model can be represented recursively. Note that, even

if the set of possible shocks Z is small, the set of possible histories grows exponentially with

time. This means that if we were to compute the model in its sequential form, we would

have to solve for an infeasible number of states.

To achieve this, we usually assume that the shock process follows a Markov process of

order 1. This means that the conditional probability of a shock in t + 1 only depends on

the last realization of the shock, in period t, and not on the whole history up to that point:

P (zt+1|zt) = P (zt+1|zt)

This means that the value of the shock realization does not depend on the whole history,

but only on the last realization. For example, let’s assume that there are two possible

technology shocks: zl = 0 and zh = 1. Every period t, the firm draws the corresponding

shock zt from Z = (zl, zh). The probabilities of drawing each shock are given by:

P (zt+1 = 0|zt = 0) = 0.7 P (zt+1 = 0|zt = 1) = 0.1

P (zt+1 = 1|zt = 0) = 0.3 P (zt+1 = 1|zt = 1) = 0.9

In this example, the probabilities of drawing a high shock zh or a low shock zl only

depend on the last value of the shock, and not on the shock history. For instance, at

t = 3, the probability of drawing z3 = 1 after the history (z0 = 1, z1 = 0, z2 = 1) is

P (z3 = 1|z2 = 1) = 0.9, which is exactly the same as the probability of drawing z3 = 1 after

the histories (z0 = 0, z1 = 0, z2 = 1), (z0 = 1, z1 = 1, z2 = 1), and (z0 = 0, z1 = 1, z2 = 1).

An example of a continuous Markov process of order 1 are autoregressive processes

AR(1):

zt+1 = µ+ ρzt + εt+1, εt+1 ∼ N(0, σ2)

where εt+1 is a random variable that is distributed normal with mean 0 and variance σ2.

100



In this process, note that the value of the random variable zt+1 depends only on the imme-

diately previous value zt, and not on the history of shocks (z0, z1, . . . , zt).

By assuming that shocks follow a Markov process of order 1, we ensure that the con-

sumption, capital and investment decisions in our model depend only on the last draw of

the shock, and not on the whole history. This will allow us to represent the sequential

problems of the household and the social planner in a recursive form.

In general, let’s assume that there are n possible values for the shock, such that, for every

t, zt ∈ Z = (1, 2, . . . , n). The transition probability matrix represents the transition

probabilities from one state to another:

Π =


P (zt+1 = 1|zt = 1) P (zt+1 = 2|zt = 1) . . . P (zt+1 = n|zt = 1)

P (zt+1 = 1|zt = 2) P (zt+1 = 2|zt = 2) . . . P (zt+1 = n|zt = 2)
...

...
. . .

...

P (zt+1 = 1|zt = n) P (zt+1 = 2|zt = n) . . . P (zt+1 = n|zt = n)



In the matrix Π, the index of the row represents the value of the last shock zt, whereas

the index of the column represent the value of the future realization of the shock zt+1. In

other words, the entry (i, j) of the matrix Π represents the probability that the shock is

zt+1 = j given that zt = i. In our previous example, we would have:

Π =

0.7 0.3

0.1 0.9

 (3.16)

Note that in every transition probability matrix, the sum of the values of each row i must

be exactly equal to 1, as this is the sum of the probabilities that zt+1 takes on any value

zt+1 ∈ Z, given that zt = i. That is, for every i ∈ {1, . . . , n}:

n∑
j=1

Πi,j =

n∑
j=1

P (zt+1 = j|zt = i) = 1

Now, let’s assume that the unconditional distribution of shocks at time t is given by the

column vector Pt = (p1
t , . . . , p

n
t )′. That is, at a given period t, the probability of drawing the
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probability shock zt = j is equal to pjt . How does the unconditional probability distribution

Pt evolves to Pt+1? Given the transition probability matrix:

pjt+1 =
n∑
k=1

Πk,j · pkt

This means that:

Pt+1 = Π′ · Pt ⇐⇒ P ′t+1 = P ′t ·Π

A stationary or invariant distribution Π̄ for the Markov chain described by the tran-

sition probability matrix Π is an unconditional distribution such that:

Π̄ = Π′ · Π̄

For example, let’s take the transition probability matrix (3.16). The invariant distribution

is Π̄ = (p1, p2)′ such that:

Π̄ =

p1

p2

 =

0.7 0.1

0.3 0.9

 ·
p1

p2

 =

0.7p1 + 0.1p2

0.3p1 + 0.9p2



This, plus the fact that p1 + p2 = 1 yields p1 = 0.25, p2 = 0.75, so the invariant or

stationary distribution is:

Π̄ =

0.25

0.75


A Markov process described by the transition probability matrix Π is stationary if, starting

with an unconditional probability distribution P0:

lim
t→∞

Pt = Π̄

where Π̄ is the invariant distribution associated with Π. It can be shown that if all the

entries of the transition probability matrix Π are positive, there exists an unique invariant

distribution and the unconditional distribution converges to it.
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This means that, although we cannot speak about a steady state, given that even in the

long run there will still be shock realizations, we know that in the long run the economy

will converge to a point in which the shocks will follow the invariant distribution and

unconditional probabilities will remain constant.

With the assumption that shocks follow a Markov process of order 1, we can now

proceed to formulate the definition of a competitive equilibrium in recursive form, in the

same fashion as Definition 3 in Section 1.6.2.

3.7 Recursive Representation

Having assumed that the shock follows a Markov process of order 1, we can now proceed

to rewrite the social planner and household’s problems in recursive terms. First, let’s start

with the social planner’s problem with incomplete markets, defined by equation (3.1). In

this case, there are two relevant state variables for the social planner: the level of capital

in the economy kt(zt−1), and the present productivity shock zt. Note that the productivity

shock in t+1 is entirely determined by the shock at t, given that z follows a Markov process.

Therefore, we do not need to include the entire history of shocks as a state variable. This

problem can be recursively written in the following way:

V (k, z) = max
c,k′≥0

u(c) + βEz′|zV (k′, z′) s.t. (3.17)

c+ k′ = (1− δ)k + ezF (k, 1)

Once the shock z is realized, the function V that solves this problem is the maximum value

that the social planner can attain, given z and k. This value function takes into account that

productivity evolution is a stochastic process that evolves according to the distribution π, so

the maximization problem chooses c, k′ that maximize the present utility plus the expected

value that can be attained in the next period. The expectation is taken over the possible

values that the shock z′ can attain next period: Ez′|zV (k′, z′) =
∑

z′∈Z π(z′|z)V (k′, z′). The

transition probabilities are given by π(z′|z), which represents the probability that the shock

z′ is realized tomorrow, given that the shock z was realized today.

Again, the solution to the social planner’s problem are a value function V (k, z) and

policy functions c(k, z) and k′(k, z) that solve the Bellman equation. Using Blackwell’s
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conditions, it can be shown that the social planner’s problem has a unique solution, which

can be obtained with value function iteration.

In an analogous way, we can write the household’s problem in a recursive way. Recall

that, in contrast to the social planner, household’s take into account prices to make their

decisions. Moreover, prices depend on the aggregate labor and capital quantities in the

economy, which are independent of, and cannot be influenced by, the individual consumers.

Therefore, in the household’s problem we have to distinguish between the aggregate state

variables, which are aggregate capital K and the productivity shock that affects the whole

economy z, and the individual state variable which is the level of capital k. The problem

of the household is:

V (k,K,A, z) = max
c,k′≥0

u(c) + β
∑
z′

π(z′|z)V (k′,K ′, A′, z′) s.t. (3.18)

c+ k′ + a′ = (1− δ)k + w(K,A, z) + r(K,A, z)k + (1 + r(K,A, z))a

K ′ = HK(K,A, z)

A′ = HA(K,A, z)

The function H represents the aggregate law of motion of capital in the economy and is

known by the household. The definition of a stochastic recursive competitive equilibrium

is the following:

Definition 5 (Stochastic Recursive Competitive Equilibrium). A stochastic recursive com-

petitive equilibrium are a value function V (k,K, z), policy functions c(k,K, z), k′(k,K, z),

pricing functions w(K, z), r(K, z), and an aggregate law of motion H(K, z), such that:

1. Given w(K, z), r(K, z), H(K, z), the value function V (k,K, z) solves the problem of the

household (3.18), with c(k,K, z), k′(k,K, z) being the corresponding policy functions.

2. Given (k,K, z), prices are such that:

w(K, z) = ezFl(K, 1)

r(K, z) = ezFk(K, 1)
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3. Given (K, z), the prices w(K, z), r(K, z) are such that the markets clear:

c(K,K, z) + i(K,K, z) = F (K, 1)

4. For every (K, z), the aggregate law of motion H(K, z) is consistent with the optimal

choice of capital accumulation of households:

K(K, z) = k′(K,K, z)

As before, we can recover the sequence of variables at every state of the world, by using

the policy functions.

3.8 Solution Methods

This section describes the main solution methods to compute the model described so far.

The value function iteration method solves the model globally, and the algorithm is a

generalization of the method presented in Section 1.6.3. Then, I present two additional

methods: log-linearization around steady state and perturbation.

3.8.1 Value Function Iteration

The value function iteration method with uncertainty is analogous to the method presented

in Section 1.6.3 with more than one state variable. The only difference is that now the second

state variable z evolves stochastically and is not chosen by the social planner/household.

However, the assumption that z follows a Markov process with a transition probability

matrix Π, makes the computation not very different from before.

As before, we have to define a grid for capital K = {k1, k2, . . . , km} and a grid for shocks

Z = {z1, . . . , zs}. The algorithm will approximate the value and policy functions at every

point in the grids K,Z.

Algorithm 4 (Value Function Iteration).

1. Define a grid for capital K = {k1, k2, . . . , km} and a grid for shocks Z = {z1, . . . , zs}.

2. Set n = 0 and start with a guess for the value function, such as V0(k, z) = 0 for all

k ∈ K, z ∈ Z.

105



3. For n ≥ 1, compute an updated guess Vn+1(k, z) by solving the right-hand side of the

Bellman equation using Vn(k, z):

Vn+1(k, z) = max
c,k′≥0

u(c) + β
∑
z′∈Z

π(z′|z)Vn(k′, z′) s.t.

c+ k′ = (1− δ)k + ezF (k, 1)

If ‖Vn+1 − Vn‖ =
√∑

k∈K,z∈Z(Vn+1(k, z)− Vn(k, z))2 < ε, stop and set the policy

functions as:

{c(k, z), k′(k, z)} = arg max
c,k′≥0

u(c) + β
∑
z′∈Z

π(z′|z)Vn(k′, z′) s.t.

c+ k′ = (1− δ)k + ezF (k, 1)

Otherwise, set n = n+ 1 and repeat 3.

Technically speaking, the algorithm can be implemented in the following way. Con-

struct a matrix Vguess of size m × s, which are the dimensions of the grids for capital and

productivity, such that:

Vguess =


V0(k1, z1) V0(k1, z2) . . . V0(k1, zs)

V0(k2, z1) V0(k2, z2) . . . V0(k2, zs)
...

. . .
...

V0(km, z1) V0(km, z2) . . . V0(km, zs)



For every k and z, construct the vector A(k, z) as:

A(k, z) =


u((1− δ)k + ezF (k, 1)− k1)

u((1− δ)k + ezF (k, 1)− k2)
...

u((1− δ)k + ezF (k, 1)− km)

+


Vguess(k1, z1) . . . Vguess(k1, zs)

Vguess(k2, z1) . . . Vguess(k2, zs)
...

. . .
...

Vguess(km, z1) . . . Vguess(km, zs)

·

π(z1|z)

π(z2|z)
...

π(zs|z)
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Note that A(k, z) is a vector of size m, which is the size of the grid for capital K. Now,

for every ki ∈ {k1, . . . , km}, check whether (1− δ)k+ ezF (k, 1)− ki ≥ 0. If not, replace the

i-th entry of A(k, z) with 10−6, or a very large negative number. This is made to prevent

choosing levels of capital ki that imply a negative consumption, which is not feasible.

Finally, set Vupdate(k, z) = maxA(k, z). That is, Vupdate(k, z) should be assigned the

value of the largest element in the vector A(k, z). Repeat this for every (k, z) in the grids.

If the euclidean distance between Vguess and Vupdate is small, the algorithm has converged.

If, instead, the difference is above the tolerance level ε, set Vguess = Vupdate and compute

again the matrix Vupdate by computing A(k, s), . . .

Once the algorithm converges, the policy function k′(k, z) can be constructed for every

(k, z) as the index of the vector A(k, z) that has the largest entry.

3.8.2 Discretization of Stochastic Variables

So far, we have assumed that the stochastic process in our model is discrete and has finite

support Z, in order to implement the value function iteration algorithm. However, this

might be a restrictive assumption, as we might be interested in computing models with

AR(1) processes to describe the evolution of certain variables, such as productivity. This

section reviews the main methods used in the literature to discretize continouos autorre-

gressive processes, by Tauchen (1986) and Rouwenhorst (1995). The idea of these methods

is to take an autorregressive process of order 1, which can be univariate or multivariate,

and convert it into a discrete Markov process of degree 1. The purpose is to obtain a grid Z

for possible values that the stochastic variable can take upon and a transition probability

matrix Π.

These methods are of utmost importance, given that in economics we often assume that

shocks certain shocks follow autorregressive processes. For example, following Storesletten

et al. (2004), the literature often assumes that idiosyncratic labor productivity zt follows

an AR(1) process:

zt+1 = (1− ρ)µz + ρzt + εt+1, εt+1 ∼ N(0, σ2
ε ) (3.19)
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To numerically solve the social planner’s problem, we should assume that z can take values

on a finite grid, and evolves according to a transition probability matrix.

Tauchen (1986)’s Method - Univariate Process

Recall that E(z) = µz and V ar(z) = σ2
z = σ2

ε
(1−ρ2)

. The grid is chosen as a set of equally

spaced points around the mean for the process µz. We must choose the width of the grid,

or a parameter m, that defines the number of standard deviations around the mean that

the grid will cover. That is, let l be the number of points in the grid, and define:

z1 = µz −m · σz, zl = µz +m · σz

Define the distance between any two consecutive grid points as d, namely:

d :=
2mσz
l

This means that z2 = z1 + d, z3 = z2 + d, . . ., such that the grid {z1, . . . , zl} is made up of

equally spaced points. The transition probabilities from state zi to state zj are constructed

as follows:

π(z′ = zj |z = zi) = Pr(zj − d/2 < (1− ρ)µz + ρzi + ε′ < zj + d/2)

= Pr(zj − d/2− (1− ρ)µz − ρzi < ε′ < zj + d/2− (1− ρ)µz − ρzi)

Figure 3.2 illustrates the transition probabilities from zi to zj , which are the area under the

normal distribution surrounding point zj , when the distribution is centered at ρzi.

Then, for every 1 < j < l, set:

π(z′ = zj |z = zi) = Θ

(
zj + d/2− (1− ρ)µz − ρzi

σε

)
−Θ

(
zj − d/2− (1− ρ)µz − ρzi

σε

)
Where Θ is the CDF of a standard normal distribution. If j = 1 or j = l, set:

π(z′ = z1|z = zi) = Θ

(
zj + d/2− (1− ρ)µz − ρzi

σε

)

π(z′ = zl|z = zi) = 1−Θ

(
zj − d/2− (1− ρ)µz − ρzi

σε

)
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π(z′ = z2|z = z3)
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(a) Transition probability from z3 to z2.

π(z′ = z4|z = z2)
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(b) Transition probability from z2 to z4.

Figure 3.2: Tauchen’s transition probabilities.

As the number of grid points l increases, the approximation of the original process im-

proves. With Tauchen’s method, we can compute models with continuous AR(1) processes

by first discretizing the process into a finite-state Markov process, and the applying the

value function iteration method.

Tauchen (1986)’s Method - Multivariate Process

Assume now that the stochastic variables z ∈ RK in our model evolve according to the

VAR(1) process:

z′ = Az + ε′, ε′ ∼ N(0,Σε) (3.20)

Pick the number of grid points in each of the dimensions of the stochastic variable n1, . . . , nK ,

so the state space of the stochastic variables has n1×n2×. . .×nK points. For each dimension

k ∈ {1, . . . ,K}, define the grid points:

zk1 = −m · σzk , zknk = m · σzk (3.21)

where σ2
zk

can be obtained from vec(Σz) = (I − A
⊗
A)vec(Σε). As with the univariate

case, the remaining grid points are chosen to be equally spaced, such that zk2 = zk1 +dk, z
k
3 =

zk2 + dk, . . ., where dk =
2mσzk
nk

. To compute the transition probability matrix, consider the

transition from (z1
i1
, z2
i2
, . . . , zKiK ) to (z1

j1
, z2
j2
, . . . , zKjK ). For each dimension k ∈ {1, . . . ,K},

the probability of zk transitioning from state ik to state jk is given by:
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πkik,jk =



Φ

(
zk1+dk/2−Akkzkik

σεk

)
, jk = 1

Φ

(
zkjk

+dk/2−Akkzkik
σεk

)
− Φ

(
zkjk
−dk/2−Akkzkik

σεk

)
, 1 < jk < Nk

1− Φ

(
zknk
−dk/2−Akkzkik

σεk

)
, jk = Nk

(3.22)

So the probability of the transition from zi = (z1
i1
, z2
i2
, . . . , zKiK ) to zj = (z1

j1
, z2
j2
, . . . , zKjK )

is equal to π(z′ = zi|z = zj) =
∏K
k=1 π

k
ik,jk

Rouwenhorst (1995)’s Method - Univariate Process

Consider the AR(1) process for z with µz = 0:

zt+1 = ρzt + εt+1, εt+1 ∼ N(0, σ2
ε )

Note that you can always re-express an arbitrary AR(1) process of the form (3.19) with

µz 6= 0, as a process with zero mean, by re-defining the stochastic variable in terms of

deviations from the mean. Denote by l the number of grid points, and set the endpoints of

the grid as:

z1 = −σz ·
√
l − 1, zl = σz ·

√
l − 1

Where, again, the other points on the grid are set equidistantly, such that z2 = z1 + d, z3 =

z2 + d, . . ., and d = 2σz ·
√
l−1

l . The transition probability matrix is defined recursively in the

following way:

Algorithm 5.

1. Define p = q = 1+ρ
2 , under the assumption of a symmetric distribution, and:

π2 :=

 p 1− p

1− q q
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2. For n ≥ 2, define:

πn+1 := p

πn 0

0′ 0

+ (1− p)

0 πn

0 0′

+ (1− q)

0′ 0

πn 0

+ q

0 0′

0 πn


where 0 is an n-dimensional column vector of zeros.

3. Divide columns 2, . . . , n of πn+1 by 2. If n + 1 = l, stop. Otherwise, set n = n + 1

and go to 2.

The resulting matrix πl of size l × l is the transition probability matrix associated to

the AR(1) process. Given this transition probability matrix, the unconditional distribution

of the stochastic variable converges to the stationary distribution λ(l) = (λ
(l)
1 , λ

(l)
2 , . . . , λ

(l)
l ),

where:

λ
(l)
i =

l − 1

i− 1

 si−1(1− s)l−1

where s = 1−p
2−(p+q) . Given this closed-form solution for the invariant distribution, we can

compute analytically the moments of the model, associated with πl.

3.9 Stationary Distribution

In order to understand how the economy would behave in the long run, we need to compute

the stationary distribution, in order to be able to compute moments in the economy. It

turns out there are three ways to compute the stationary distribution. The first one involves

simulating the economy over a large enough number of periods, and analyzing the moments

of the economy throughout time. The second one is computing a transition matrix that

states the probabilities of moving from states (k, z) today to states (k′, z′) tomorrow, and

applying it to the unconditional distribution until it converges. The third one involves

obtaining the eigenvector of the transition a matrix.

3.9.1 Simulation

The purpose of this section is to simulate the behavior of the social planner after a long

history of shocks, using the solution to the social planner’s problem obtained through value
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function iteration.

In order to simulate the behavior of the economy, start with a shock in period t = 0 given

by z ∈ Z. Generate a random number x from a uniform distribution U [0, 1]. The transition

probabilities are given by π(z′ = z1|z = zi), π(z′ = z2|z = zi), . . . , π(z′ = zn|z = zi). Set z′

as:

z′ =



z1 if x < π(z1|zi)

z2 if π(z1|zi) < x ≤
∑2

j=1 π(zj |zi)

z3 if
∑2

j=1 π(zj |zi) < x ≤
∑3

j=1 π(zj |zi)
...

zn if
∑n−1

j=1 π(zj |zi) < x ≤
∑n

j=1 π(zj |zi)

Repeat this process, by drawing a another random number and obtaining z′′, given the

z′ obtained, and so on. In this way, construct a whole sequence of shocks for a sufficiently

large number of periods, such as T = 10, 000.

Panel (a) in Figure 3.3 illustrates the simulation of the shocks during 100 periods, and

panel (b) illustrates the distribution of shocks after a simulation with 100, 000 periods. As

can be observed, the distribution of the shocks resembles a normal distribution. This is be-

cause the transition probability matrix was obtained with Tauchen’s method, by discretizing

a continuous AR(1) process.
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(a) Simulation of shocks.
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(b) Stationary distribution in state space.

Figure 3.3: Simulation of model with exogenous productivity shocks.
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Once the history of random shocks has been obtained, the next step is to compute the

capital accumulation decision of the social planner. For this, assume that the economy

starts off with an initial level of capital k ∈ K, which could be set as the smallest value in

the capital grid. Given the initial shock z and the initial level of capital k, the planner will

choose k′ = k′(k, z). Next period, given the shock z′ and capital chosen in the first period

k′, the planner will choose k′′ = k′(k′, z′), and so on. In a similar way, we can compute all

other variables in the economy, such as consumption c, investment i and production y.

Note that we are assuming that the economy starts off with a level of capital k0 which

might not be very likely to occur in the long-run. That is, once we start our economy

in period 0, it might take some periods for the economy to converge to the long-run sta-

tionary distribution. Therefore, it is recommended to discard, for example, the first 1, 000

simulations and only keep the remaining ones.

With this time series for capital and shocks, we can compute the long-run distribution

along the state space, by looking at the proportion of periods the economy spent on each

of point (k, z). Figure 3.4 illustrates the stationary distribution of the simulated economy.

That is, it illustrates the probability that the economy is in state (k, z) at a given point in

time.
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Capital Productivity shock

Figure 3.4: Stationary distribution of the model with exogenous productivity shocks.

Once we have computed the stationary distribution of this economy, we can compute

moments, such as the standard deviation of consumption, production and investment, and

correlations between variables. Table 3.1 illustrates the results for the simulation of this

economy.
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Moment Value

Std. c 0.31

Std. y 1.11

Std. i 0.43

Corr(c,y) 0.81

Corr(i,y) 0.93

Table 3.1: Stationary moments of the model with exogenous productivity shocks.

In this version of the model, there is no technological growth, no population growth,

and no endogenous labor.

3.9.2 Transition Matrix

The second method for computing the stationary distribution is to compute the transition

matrix that, given the optimal choices of the planner, states the probability that the econ-

omy moves from state (k, z) to state (k′, z′). This transition has both a deterministic and a

stochastic component. Assume the planner is in state (k, z). The optimal choice of capital

is dictated by its policy function k′ = k′(k, z), which is deterministic. However, the value

z′ at which the economy will appear next period is stochastic, and depends on the Markov

transition probability matrix π(z′|z). Therefore, for each zi ∈ Z, the economy will move

to (k′, zi) with probability π(z′ = zi|z), where k′ = k′(k, z). Similarly, the probability of

moving from states (k, z) to states (k′, z′) for k′ 6= k′(k, z) is equal to zero, given that the

planner will not choose that level of capital.

To compute the stationary distribution, construct the transition matrixQ((k, z), (k′, z′)),

which dictates the probability of transitioning from (k, z) to (k′, z′), as follows:

Q((k, z), (k′, z′)) =

 π(z′|z) if k′ = k′(k, z)

0 otherwise

Let Pt ∈ R|K|×|Z| be the unconditional distribution of agents in the K × Z state space

in period t. The evolution of the unconditional distribution is described by the following

equation:

Pt+1 = Q′ · Pt (3.23)
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where Q′ is the transpose of the transition matrix Q. The stationary distribution P ∗

satisfies P ∗ = Q′ · P ∗. This means that the stationary distribution P ∗ is the eigenvector of

the transition matrix Q associated to the eigenvalue that is equal to 1. We can compute the

stationary distribution of this economy simply by computing the eigenvector of Q associated

to the eigenvalue equal to 1.

Similarly, note the if the economy converges to its stationary distribution, it must be

the case that equation (3.23) holds in the limit. In particular:

Pt = Q′Pt−1 = (Q′)2Pt−1 = . . . = (Q′)tP0

where (Q′)t is the product of (Q′) with itself t times, so the stationary distribution satisfies:

P ∗ = lim
t→∞

Pt = lim
t→∞

(Q′)t · P0

Therefore, to compute the stationary distribution P ∗, we can start from the exogenously

given unconditional distribution in period t = 0, and left-multiply it over and over again by

Q′, until convergence.

3.10 Real Business Cycles

Economic cycles have been a topic of interest for economists since the early XIX century.

However, given the lack of theoretical infrastructure before the neoclassical growth model

before the decade of 1960, the advances in the study of business cycles were slow. The

development of the general equilibrium theory by Arrow and Debreu led macroeconomists

was the first step towards the development of a macroeconomic theory with rational, max-

imizing agents. In his paper, Lucas (1977) defined business cycles as “movements about

trend in gross national product”. However, he did not defined what a trend is.

Hodrick and Prescott (1997) proposed a procedure for obtaining the trend component

that has been widely accepted in the literature. Assume we have a time series {Yt}Tt=0,

where Y can be GDP or any other macroeconomic variable. We can decompose Yt as

Yt = Y g
t · Y c

t , where Y g
t is the trend component and Y c

t is the cyclical component. In
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logarithms, yt = ygt + yct . The trend component ygt can be obtained as:

arg min
yg

T∑
t=0

(yt − ygt )2 + λ

T∑
t=1

[
(ygt+1 − y

g
t )− (ygt − y

g
t−1)

]2
Where λ is a parameter that determines the smoothness of the trend ygt . The first term∑T

t=0(yt − ygt )2 is the sum of squared deviations of the series from the trend. The second

term
∑T

t=1

[
(ygt+1 − y

g
t )− (ygt − y

g
t−1)

]2
is a multiple λ of the squared differences in growth

rates over time. A large value of λ penalizes more the variation in growth rates, so yields a

very stable trend. In the limit, as λ→∞, the result is a linear trend. In the opposite case,

when λ = 0, the trend is exactly equal to the original time series.

The values of λ depend on the variation we want the trend to have. Presumably, if

the time series corresponds to high-frequency data, such as daily or hourly financial data,

the variation in the data is large, so we should use a large value for λ. In contrast, if the

frequency of the data series is small, such as yearly data, the trend can be obtained with a

small value for λ. Ravn and Uhlig (2002) suggest using λ = 6.24 for yearly data, λ = 1600

for quarterly data, and λ = 129, 600 for monthly data.

Once we have a procedure to obtain the trend from a time series, we can obtain the

cyclical component by subtracting the trend from the time series: yct = yt − ygt . Table 3.2

provides the standard deviations of the cyclical component of consumption, investment, gov-

ernment purchases, exports, imports, labor supply, and capital, as well as their correlation

with the cyclical component of the gross national product.

The results obtained by studying the cyclical component of aggregate variables yields

the following conclusions. First, consumption, investment, and real wages are procyclical.

Second, consumption, labor supply, and labor income are less volatile than the gross national

product, while investment is much more volatile.

The neoclassical growth model with stochastic productivity shocks, endogenous labor

supply, and exogenous technological growth is the basis of “Real Business Cycle” (RBC)

theory, which studies the short run fluctuations in the economy. Cooley and Prescott

(1995) calibrate the neoclassical growth model with uncertainty, endogenous labor, and

exogenous productivity and population growth. Assume that population grows at a rate

n, productivity grows at a rate g, households have a period utility function u(ct, lt) =

(1 − φ) log(ct) + φ log(1 − lt), and the production function is Cobb-Douglas F (kt, Atlt) =
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Variable Std. dev. (%) Corr. with y

Std. y 1.71 1.00

Std. c 1.25 0.82

Std. i 8.30 0.91

Std. g 2.07 0.05

Std. x 5.53 0.34

Std. m 4.92 0.71

Std. l 1.47 0.86

Std. k 0.62 -0.08

Std. wl 1.58 0.88

Std. Rk 2.93 0.84

Table 3.2: Business cycle statistics for the U.S.

ezt(1 + g)t(1−α)kαt l
1−α
t . The social planner’s problem is:

max
ct,kt+1,lt

E0

∞∑
t=0

β̂t
[
(1− φ) log(ct(z

t)) + φ log(1− lt(zt))
]

s.t.

ct(z
t) + (1 + n)(1 + g)kt+1(zt) = (1− δ)kt(zt−1) + ezt(1 + g)t(1−α)kt(z

t−1)αlt(z
t)1−α

zt+1 = ρzt + εt+1, εt+1 ∼ N(0, σ)

ct(z
t), kt+1(zt) ≥ 0, k0 given

To compute this model, parameter values for α, φ, β, δ, n, g, ρ, σ must be chosen. These

values are chosen such that the non-stochastic economy (that is, the economy with zt = 0),

matches some long-run moments in the data.

First, α is chosen, such that 1 − α = wl
y matches total compensation to labor. In the

literature, α ≈ 0.33, but Cooley and Prescott (1995) choose α = 0.4, because they include

imputed income from government capital. Parameters n and g are set as the long-run

rates of population growth and per-capita income growth, respectively. For the rest of

parameters, recall that the non-stochastic version of the social planner’s problem yields the
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following balanced growth path conditions:

1

β̂
=

1− δ + αkα−1l1−α

(1 + n)(1 + g)
⇐⇒ 1

β
=

1− δ + αy/k

(1 + g)
(3.24)

(1− α)
y

c
=

φ

1− φ
l

1− l
(3.25)

(1 + n)(1 + g)k = (1− δ)k + i ⇐⇒ δ =
i

k
+ 1− (1 + g)(1 + n) (3.26)

From equation (3.26), by using the investment rate (i/k = 0.076) and the values for n and

g, we can obtain an estimate for annual depreciation δ = 0.048, or quarterly depreciation

δ = 0.012. With values for δ, n, g, α, and the capital output ratio (k/y = 3.32), equation

(3.24) pins down an annual value for β = 0.947, or a quarterly value β = 0.987. Finally,

equation (3.25) pins down φ for a given l and y/c. The steady state labor l is set to l = 0.31,

given that micro-estimates find that households allocate around 1/3 of their time to work.

Given this, the steady-state ratio of output to consumption is y/c = 1.33, which yields

φ = 0.64.

Finally, by computing the Solow residuals for the U.S. economy, the authors find a high

persistence in the productivity process. They calibrate ρ = 0.95 and σ = 0.007.

Moment Model U.S. data

Std. y 1.35 1.72

Std. c 0.33 1.27

Std. i 5.95 8.24

Std. l 0.77 1.59

Corr(y, c) 0.85 0.83

Corr(y, i) 0.99 0.91

Corr(y, l) 0.72 0.86

Table 3.3: Business cycle statistics for the U.S. and model performance

Using this calibration, Table 3.3 illustrates the moments obtained in the data for the

U.S. economy and in the model. The model does a good job at replicating the direction of

business cycle facts, such as the procyclicality of consumption, investment, and labor, and

the magnitude of fluctuations in production, investment, and labor.
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3.11 Log-Linearizing around the Steady State

Take the optimality conditions to the social planner’s problem:

u′(ct(z
t)) = βE

(
1− δ + ezt+1Fk(kt+1(zt), 1)

)
u′(ct+1(zt+1))

ct(z
t) + kt+1(zt) = (1− δ)kt(zt−1) + eztF (kt(z

t−1), 1)

For this section, I will simplify notation and drop the dependency of variables on the shock

history zt. Moreover, assume the utility function is CRRA and the production function is

Cobb-Douglas:

c−σt = βE
[(

1− δ + ezt+1αkα−1
t+1

)
c−σt+1

]
(3.27)

ct + kt+1 = (1− δ)kt + eztkαt (3.28)

The solution to the social planner’s problem are functions for consumption and capital

accumulation that solve this non-linear system of equations for t ∈ {1, . . .}. Solving a

system of non-linear equations turns out to be much more involved that solving a system

of linear equations. In this section, we will approximate this nonlinear system with a linear

one, using a Taylor approximation around the non-stochastic steady state.

First, recall that in this model without uncertainty, when zt = 0, the steady state of the

economy is pinned down by k and c that solve:

1 = β(1− δ + αkα−1) (3.29)

c = kα − δk (3.30)

Where again, to keep notation simple, as opposed to past sections, I ommited the ∗ super-

scritp to denote steady state variables. Define variables with a hat, as the log-deviations

from steady state. For example, define:

ĉt = log(ct)− log(c) ≈ ct − c
c

Log-deviations from steady state are approximately equal to the percentage deviation from

steady state, whenever the economy is close to steady state. We can re-express the opti-
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mality conditions in terms of log-deviations, by noting that ct = ceĉt and kt = kek̂t :

e−σĉt = βE
[(

1− δ + αkα−1ezt+1+(α−1)k̂t+1

)
e−σĉt+1

]
ceĉt + kek̂t+1 = (1− δ)kek̂t + kαezt+αk̂t

Let’s linearize this system around ĉt = ĉt+1 = k̂t = k̂t+1 = 0, which is equivalent to

linearizing the system described by equations (3.27) and (3.28) around c and k. Recall that

we can approximate a function f(x) around a point x0 using a Taylor expansion of order 1,

such that f(x) ≈ f(x0) + f ′(x0)(x− x0). If the function is multivarite, we can approximate

f(x, y) around (x0, y0) with f(x, y) ≈ f(x0, y0)+fx(x0, y0)(x−x0)+fy(x0, y0)(y−y0). This

means that:

f(ĉt) = e−σĉt ≈ −σĉt

f(ẑt+1, k̂t+1) = e−σĉt+1

(
1− δ + αkα−1ezt+1+(α−1)k̂t+1

)
≈ (1− δ + αkα−1)− σ(1− δ + αkα−1)ĉt+1 +

(1− δ + αkα−1)zt+1 + (α− 1)(1− δ + αkα−1)k̂t+1

= (1− δ + αkα−1)(−σĉt+1 + zt+1 − (1− α)k̂t+1)

...

Using these approximations, the fact that in the non-stochastic steady state equations (3.29)

and (3.30) hold, and Ezt+1 = ρzt, the system of optimality conditions becomes:

σĉt + ρzt − (1− α)k̂t+1 − σE(ĉt+1) = 0 (3.31)

cĉt + kk̂t+1 − ((1− δ)k + αkα) k̂t − kαzt = 0 (3.32)

Using a result in control theory, we can solve this system and obtain policy functions that

are linear functions of the state variables kt and zt. We will use the method of undetermined

coefficients to obtain the policy functions. Write:

k̂t+1(kt, zt) = Ak̂t +Bzt (3.33)

ĉt(kt, zt) = Ck̂t +Dzt (3.34)
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Now, we should plug in these policy functions in the linearized optimality conditions (3.31)

and (3.32), and try to solve for A,B,C and D in terms of the parameters of the model. First,

note that ĉt+1 = Ck̂t+1 +Dzt+1, so Eĉt+1 = C(Ak̂t +Bzt) +Dρzt = ACk̂t + (BC + ρD)zt.

The system of linearized equations can be written as:

σ(Ck̂t +Dzt) + ρzt − (1− α)(Ak̂t +Bzt)− σ(ACk̂t + (BC + ρD)zt) = 0

c(Ck̂t +Dzt) + k(Ak̂t +Bzt)− ((1− δ)k + αkα) k̂t − kαzt = 0

Rearranging:

(σC − (1− α)A− σAC) k̂t + (σD + ρ− (1− α)B − σ(BC + ρD)) zt = 0

(cC + kA− (1− δ)k − αkα) k̂t + (cD + kB − kα) zt = 0

Given that these equations must hold for all k̂t and zt, it must be that:

σC − (1− α)A− σAC = 0 (3.35)

cC + kA− (1− δ)k − αkα = 0 (3.36)

σD + ρ− (1− α)B − σ(BC + ρD) = 0 (3.37)

cD + kB − kα = 0 (3.38)

These are two systems of equations in two unknowns each. We can solve this system to

obtain the values of A,B,C and D in terms of the model parameters, to construct the

linearized policy functions k̂t+1(k̂t, zt) and ĉt(k̂t, zt), characterized by equations (3.33) and

(3.34). Note that the constants A and C can be obtained by solving the system composed

only by equations (3.35) and (3.36). Once we have solved for C, we can solve the system of

equations (3.37) and (3.38), to obtain B and D.

Moreover, note that by solving for C in (3.36) and plugging in (3.35), we obtain:

[(1− δ)k + αkα −Ak]−
[
(1− α) +

σ

c
(1− δ)k +

σ

c
αkα

]
A+

σk

c
A2 = 0 (3.39)

Which is a quadratic equation on A, with two roots. One of these solutions is such that

A > 1 and the other one satisfies A < 1. However, only the solution for which A < 1 will

satisfy the transversality condition of the social planner’s problem. This is because, for the
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value A > 1, the policy function at k̂t and zt = 0 is k̂t+1 = Ak̂t+1. This means that any

deviation of kt from steady state (k̂t > 0) will generate an even larger deviation in t + 1,

and so on. This means that deviations from steady state would generate diverging behavior

in the long run, violating the transversality condition.

Once a solution is obtained, the corresponding policy functions are:

kt+1 = k

(
kt
k

)A
eBzt

ct = k

(
kt
k

)C
eDzt

Figure 3.5 illustrates the policy functions for the value function iteration algorithm as well

as for the log-linearization procedure. Around the steady state value for capital, the log-

linear approximation is very close to the optimal capital accumulation decision, given by

the policy function of the value function iteration. However, in regions of the state space

that are far from the steady state, the log-linear approximation is not very precise.

k

k'

Value Function Iteration
Log-linearization

k*

Figure 3.5: Capital policy function for value function iteration and log-linearization.
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