NOTES ON PARALLELIZATION

Jests Fernandez-Villaverde
David Zarruk Valencia

October 11, 2017

TABLE OF CONTENTS

1. MOTIVATION

WHY PARALLEL?

| 2

Moore's Law (1965): transistor density of semiconductor chips would

double roughly every 18 months.
Problems when transistor size falls by a factor x:

1. Electricity consumption goes up by x*.
2. Heat goes up.
3. Manufacturing costs go up.
Inherent limits on serial machines imposed by the speed of light (30

cm/ns) and transmission limit of copper wire (9 cm/ns): virtually

impossible to build a serial Teraflop machine with current approach.

Furthermore, real bottleneck is often memory access (RAM latency has

only improved around 10% a year).

Alternative: having more processors!

NUMBER OF TRANSISTORS

20,000,000,000

1BM 213 Storage Controller,

5,000,000,000 ot.coroXeon vPvlg "8 :Ascoye Xeon Ivy Bridge-EX
8-core Xeon Nehzlem EX\ ABX (lrl -core ARM64 “mobile SoC*)
Six.core Xeor & cme()ove 7 H

Buotors BT coro 7 Broasuany
Dual-core fanom 3 buc;core + G lis Core 7 Brpace

1,000,000,000 Pentium D Presler. Powsﬁ 0 Quuaceors - GPU Core 7 Fasw

g2 it Oappie A7 (dual-core ARME4 ‘mobile SoC')

9 MB ca Cove (Qua
500,000,000 tarium2 Vadson ew EH %%‘WSN“;F ML
Pentiym D Smitfieids,
I(amum?McKm\ Y SI° @ eve 5 Bog Wolldale 3
entium 4 Prescott-2! \Qpcore 2 Dugglsndale
et d
100,000,000 AMD K8 O 4 prescot
Pentium 4 Northwoor
= 50,000,000 Pentam s wiameties .0 BT @atom
=1 Pentium Il Mobile Dixor Peqthum Il Tuslati}
I+ MD K7 QARM Cortex-A9
‘@Pentium Ill Coppermine
S AMD K6-lil
S 10,000,000 AMD K, e Kt
@ Farkiam P Pe% m fiom i Bescutes
@ 5,000,000 °0
s Pentiumg, 1 K5
': Intel 80486, s
el
1,000,000 % oo
Tl Explorer's 32-bit,
500,000 LS aching chip @ . .
el 0305g, ot o @AM
Motorola 68020 @
100,000 - e RERHER %M
1855 M
50,000 @intel 80186 N
Intel 8086 € Intel 8088 PR A e

C
Mglorgla 65CkTe '{M
TMS 1000 Zilog 280 NC4016
10,000 gy s %

5,000 s oo
Technology
InteMgGA Mgkﬂd&la Mﬁ%?
1,000
Q AV aAX A0 D O P N N> O PO & © & O 0 > 0
SO gV " 8 g @b q‘bb‘ LSS LSS (&e"@o S 8 T

Year of introduction

CRAY-1, 1975

SUNWAY TAIHULIGHT, 2016

PARALLEL PROGRAMMING

» Main idea=-divide complex problem into easier parts:

1. Numerical computation.

2. Data handling (MapReduce and Hadoop).

» Two issues:

1. Algorithms.

2. Coding.

SOME REFERENCES

» Parallel Programming for Multicore and Cluster Systems by Thomas

Rauber and Gudula Riinger.

» An Introduction to Parallel Programming by Peter Pacheco.

» Principles of Parallel Programming by Calvin Lin and Larry Snyder.

» Structured Parallel Programming: Patterns for Efficient Computation by
Michael McCool, James Reinders, and Arch Robison.

» Introduction to High Performance Computing for Scientists and
Engineers by Georg Hager and Gerhard Wellein.

WHEN DO WE PARALLELIZE? |

» Scalability:

1. Strongly scalable: problems that are inherently easy to parallelize.

2. Weakly scalable: problems that are not.

» Granularity:

1. Coarse: more computation than communication.

2. Fine: more communication.

» Overheads and load balancing.

GRANULARITY

] Communication

[J Computation

WHEN DO WE PARALLELIZE? II

v

Whether or not the problem is easy to parallelize may depend on the way

you set it up.

v

Taking advantage of your architecture.

v

Trade off between speed up and coding time.

v

Debugging and profiling may be challenging.

v

You will need a good IDE, debugger, and profiler.

EXAMPLE I: VALUE FUNCTION ITERATION

V (k)= mkallx{u(c)—i-/BV(k’)}
c=k¥+(1-08)k—K
1. We have a grid of capital with 100 points, k € [k1, k2, ..., k100] -

2. We have a current guess V" (k).
3. We can send the problem:

max {u(c)+BV"(K)}
c= ki 4 (1—8) ki — K
to processor 1 to get V™1 (ky).

4. We can send similar problem for each k to each processor.

5. When all processors are done, we gather the V"1 (k;) back.

EXAMPLE II: RANDOM WALK METROPOLIS-HASTINGS

» Draw 6 ~ P (+)
» How?

1. Given a state of the chain 6,_1, we generate a proposal:

0* =0,-1+ e, e ~N(0,1)

0, = 0" w.p. «

2. We compute:

3. We set:

0, = 0Op_1wp l—a

» Problem: to generate 6* we need to 6, 1.
» No obvious fix (parallel chains violate the asymptotic properties of the
chain).

TABLE OF CONTENTS

2. THE MODEL

LIFE-CYCLE MODEL

» Households solve:

1-0

+BEV(t+1,€¢,X) s.t.

Vitex) = o 1,

c+xX <(1+r)x+ew

P(e'le) =T (e)

COMPUTING THE MODEL

1. Choose grids for assets X = {xi,...,xpn, } and shocks E = {ey, ..

2. Backwards induction:
2.1 For t =T and every x; € X and ¢; € E, solve the static problem:
V(t, e, xi) = n{wx u(c) st. c<(A+r)x+ew

c}

22 Fort=T—-1,...,1, use V(t+1,¢j,x) to solve:

-y €ne -

V(t,e,x;)) = max u(c)+BEV(t+1,€,x) s.t

{e,x'eX}
c+x' <(1+4r)x + ew
P(e' € Elej) =T(e))

CODE STRUCTURE

for(age = T:-1:1)
for(ix = 1:nx)
for(ie = 1:ne)
VV = -10"3;
for(ixp = 1:nx)

expected = 0.0;
if(age < T)
for(iep = 1:ne)
expected = expected + P[ie, iepl*V[age+l, ixp, iepl;
end
end

cons = (1 + r)x*xgridl[ix] + egrid[iel*w - xgrid[ixpl;
utility = (cons~(l-ssigma))/(1-ssigma) + bbetaxexpected;

if (cons <= 0)
utility = -1075;
end
if (utility >= VV)
VV = utility;
end
end
Vlage, ix, iel = VV;
end
end

IN PARALLEL

1. Sett=T.

2. Given t, the computation of V(t, e, x;) is independent of the
computation of V(t, ey, xir), for i # ', j # j'.

3. One processor can compute V/(t, ej, x;) while another processor
computes V(t, ejr,).

4. When the different processors are done at computing V/(t, ¢, x;),

Vx;i € X and Vej € E, set t =t — 1.
. Goto 1.

(@

Note that the problem is not parallelizable on t. The computation of
V(t,e, x) depends on V(t+ 1, e, x)!

PARALLEL EXECUTION OF THE CODE

Thread 1
Thread 1
Thread 2 Thread 1
Master Thread 2 Master
Thresd Thread 3 Thread 2 Thread
Thread 3
Thread 4

Parallel region Parallel region Parallel region

MANY WORKERS INSTEAD OF ONE

F1GURE : 1 Core Used for Computation

CPU History
0% /
o ‘

')
0% fA
N\ A A _ \ A~
N\ SN ASA e AN N - A R
ox = - -
e 0 © % © 0 o
CPU1 7.8% Il cPu2 100.0% B cPu3 3.9% I cPus 0.0%
I cPus 1.0% I cPus 0.0% I cPu7 1.0% I cPus 0.0%

FIGURE : 8 Cores Used for Computation

CPU History

2 c/ "\
os =
e % © » 0 0 o
[cru1 100.0% Il cPu2 %6.0% Il cPu3 94.0% Il crPus 91.0%
Il cPus 94.9% Il cPus 95.0% Il cPu7 95.0% Il cPus 95.0%

COMPUTATIONAL FEATURES OF THE MODEL

1. The simplest life-cycle model.
2. Three state variables:

2.1 Age.
2.2 Assets.
2.3 Productivity shock.

3. Parallelizable only on assets and shock, not on age.

4. May become infeasible to estimate:
4.1 With more state variables:

> Health.

> Housing.

> Money.

> Different assets.

4.2 If embedded in a general equilibrium.

TABLE OF CONTENTS

3. PARALLELIZATION LIMITS

COSTS OF PARALLELIZATION

» Amdahl's Law: the speedup of a program using multiple processors in
parallel computing is limited by the time needed for the sequential
fraction of the program.

» Costs:

» Starting a thread or a process/worker.
» Transferring shared data to workers.

> Synchronizing.

» Load imbalance: for large machines, it is often difficult to use more than
10% of its computing power.

PARALLELIZATION LIMITS ON A LAPTOP

> Newest processors have:

4 physical cores + 4 virtual cores = 8 logical cores

Corel

Core 2

Core 3

Core 4

MULTI-CORE PROCESSORS

B"GEN

" 4.0GHz

™ BXTHREADS
8MB

CACHE

i7 6700

KNOW YOUR LiMITS!

> Spend some time getting to know you laptop’s limits and the problem to

parallelize.

> In our life-cycle problem with many grid points, parallelization improves

performance almost linearly, up to the number of physical cores.

» Parallelizing over different threads of the same physical core does not

improve speed if each thread uses 100% of core capacity.

» For computationally heavy problems, adding more threads than cores

available may even reduce performance.

YOUR LAPTOP 1S NOT THE LIMIT!

» Many other resources:
» Tesla server:
> 61 Cores
» Hawk server:
> 72 Cores
» Amazon Web Services - EC2:

> Almost as big as you want!

AMAZON WEB SERVICES

» Replace a large initial capital cost for a variable cost (use-as-needed).

» Check: https://aws.amazon.com/ec2/pricing/

» 8 processors with 32Gb, general purpose: $0.479 per hour.

» 64 processors with 256Gb, compute optimized: $3.83 per hour.

RUNNING AN INSTANCE ON AWS

» Go to: https://console.aws.amazon. com/
» Click on EC2.
» Click on Launch Instance and follow the window links (for example,

Ubuntu Server 14.04).
Public key:

v

> Create a new key pair.
» Download key.

» Store it in a secure place (usually ~./ssh/).

Run instance.

v

WORKING ON AWS INSTANCE

On Ubuntu terminal:

» Transfer folder from local to instance with scp:

scp -1 ath/PUBLICKEY.pem" -r athfrom/FOLDER
$ 3) 3 u/P / © P n n/p f / 0 /n
ubuntu®52.3.251.249:~

» Make sure key is not publicly available:

$ chmod 400 "/path/PUBLICKEY.pem"

» Connect to instance with ssh:

$ ssh -i "/path/PUBLICKEY.pem" ubuntu@52.3.251.249

TABLE OF CONTENTS

4. PARALLELIZATION
4.1. Julia
4.2. Python
43. R
4.4, Matlab
4.5. C++ and OpenMP
4.6. Rcpp and OpenMP

TwWO WAYS OF PARALLELIZING

1. for loop:

» Adding a statement before a for loop that wants to be parallelized.

2. Map and reduce:

» Create a function that depends on the state variables over which the

problem can be parallelized:
> In our example, we have to create a function that computes the value
function for a given set of state variables.
» Map computes in parallel the function at a vector of states.

» Reduce combines the values returned by map in the desired way.

TABLE OF CONTENTS

4. PARALLELIZATION

4.1. Julia

PARALLELIZATION IN JULIA - for LOOPS

» Parallelization of for loops is worth for “small tasks.”

> “Small task” == “few computations on each parallel iteration™:
» Few control variables.
» Few grid points on control variables.

» Our model is a “small task.”

PARALLELIZATION IN JULIA - for LOOPS

1. Set number of workers:

addprocs (6)

2. Variables are not observable by workers = Declare the variables inside
the parallel for loop that are not modified inside parallel iterations to be
global:

Q@everywhere T = 10;
#...
Q@everywhere gridx = zeros(nx);

3. Declare the variables inside the parallel for loop that are modified inside
parallel iterations as SharedArray:

V = SharedArray(Float64, (T, nx, ne),
init = V -> V[Base.localindexes(V)] = myid());

PARALLELIZATION IN JULIA - for LOOPS

4. For paralellizing a for loop, add @parallel before the for statement:

@parallel for(ix = 1:1:nx)
...

end

(@

. To synchronize before the code continues its execution, add @sync

before the @parallel for statement:

@sync @parallel for(ix = 1:1:nx)
...

end

PARALLELIZATION IN JULIA - for LOOPS

» Choose appropriately the dimension(s) to parallelize:

nx = 350;

ne = 9;

for(ie = 1:ne)

@sync @parallel for(ix
...

end

end

1:nx)

nx = 350;
ne = 9;
for(ix = 1:nx)

@sync @parallel for(ie
...
end

end

1:ne)

» The first one is much faster, as there is less communication.

PARALLELIZATION IN JULIA - for LOOPS

» OR convert the problem so all state variables are computed by iterating

over a one-dimensional loop:

@sync O@parallel for(ind = 1:(ne*nx))
ix = convert(Int, ceil(ind/ne));
ie = convert(Int, floor(mod(ind-0.05, ne))+1);
...

end

» Communication time is minimized!

PARALLELIZATION IN JULIA - for LOOPS

v

Speed decreases with the number of global variables used.

v

Very sensible to the use of large SharedArray objects.

v

Can be faster without paralellization than with large shared objects.

v

See examples 1 and 2 on github

PARALLELIZATION IN JULIA - Map

» Problems with more computations per iteration.
» Value function/life-cycle models with more computations per state:
» Many control variables.
» Discrete choice (marry-not marry, accept-reject work offer, default-repay,
etc.).
> If problem is “small”, using map for parallelization is slower.
» See examples 3 and 4 on github.

PARALLELIZATION IN JULIA - Map

1. Initialize number of workers:

addprocs(6)

2. To avoid declaring all variables as global (makes computation slower),

define a structure of inputs:

Q@everywhere type modelState

ix::Int64
age::Int64
...

end

PARALLELIZATION IN JULIA - Map

3. Define a function that computes value function for a given state:

Q@everywhere function value(currentState::modelState)
ix = currentState.ix;
age = currentState.age;
...
v = -10"3;
for(ixp = 1:nx)
...
end
return(VV);
end

PARALLELIZATION IN JULIA - Map

4. The function pmap(f,s) computes the function £ at every element of s
in parallel:

for(age = T:-1:1)
pars = [modelState(ix, age, ..., w, r) for ix in 1:nx];
s = pmap(value,pars);
for(ind = 1:nx)
V[age, ix, ie]l = s[ix];
end

end

PARALLELIZATION IN JULIA - FINAL ADVICE

> Assess size of problem, but usually problem grows as paper evolves!

» Wrapping value function computation for every state might significantly

increase speed (even more than parallelizing).

TABLE OF CONTENTS

4. PARALLELIZATION

4.2. Python

PARALLELIZATION IN PYTHON - Map

1. Use joblib package

from joblib import Parallel, delayed

import multiprocessing

2. Define a parameter structure for value function computation:

class modelState(object):
def __init__(self, age, ix, ...):
self.age = age
self.ix = ix
...

PARALLELIZATION IN PYTHON

3. Define a function that computes value for a given input states of type

modelState:

def value_func(states):
nx = states.nx
age = states.age
...
VV = math.pow(-10, 3)
for ixp in range(0,nx):
...
return[VV];

PARALLELIZATION IN PYTHON

4. The function Parallel:

results = Parallel(n_jobs=num_cores) (delayed(value_func)
(modelState(ix, age, ..., w, r)) for ind in

range (0,nx*ne))

maps the function value_func at every element of modelState(ix,

age, ..., w, r) in parallel using num_cores cores.

PARALLELIZATION IN PYTHON

=

J.

Life-cycle model:

for age in reversed(range(0,T)):
results =
Parallel(n_jobs=num_cores) (delayed(value_func)
(modelState(ix, age, ..., w, r)) for ix in
range (0,nx))
for ix in range(O,nx):

V[age, ix] = results[ix][0];

TABLE OF CONTENTS

4. PARALLELIZATION

43. R

PARALLELIZATION IN R - Map

1. Use package parallel:

library("parallel")

2. Create the structure of parameters for the function that computes the
value for a given state as a list:

states = lapply(l:nx, function(x) list(age=age,ix=x,

..,r=r))

PARALLELIZATION IN R

3. Create the function that computes the value for a given state:

value = function(x){
age = x3$age
ix = x$ix
VvV = -1073;
for(ixp in 1:nx){

...

}
return(VV);

}

PARALLELIZATION IN R

4. Define the cluster with desired number of cores:

cl <- makeCluster (no_cores)

5. Use function parLapply(cl, states, value) to compute value at

every state in states with c1 cores:

for(age in T:1){
states = lapply(l:nx, ...)
for(ix in 1:nx){
Vlage, ix] = s[[ix]][1]
}
}

TABLE OF CONTENTS

4. PARALLELIZATION

4.4. Matlab

PARALLELIZATION IN MATLAB - for LOOP

Using the parallel toolbox:

1. Initialize number of workers with parpool():

parpool(6)

2. Replace the for loop with parfor:

for age = T:-1:1
parfor ie = 1:1:ne
B coc
end

end

PARALLELIZATION IN MATLAB

» Extremely easy.

» Also simple to extend to GPU.

» There is no free lunch = very poor performance.

TABLE OF CONTENTS

4. PARALLELIZATION

4.5. C++ and OpenMP

OPENMP 1

» Open specifications for multi-processing.

» It has been around for two decades. Current version 4.5.

» Official web page: http://openmp.org/wp/

» Tutorial: https://computing.1llnl.gov/tutorials/openMP/

» Using OpenMP: Portable Shared Memory Parallel Programming by

Barbara Chapman, Gabriele Jost, and Ruud van der Pas.

» Fast to learn, reduced set of instructions, easy to code, but you need to

worry about contention and cache coherence.

OPENMP II

v

API for multi-processor/core, shared memory machines defined by a

group of major computer hardware and software vendors.

» C++ and Fortran. Extensions to other languages.

v

For example, you can have OpenMP in Mex files in Matlab.

v

Supported by major compilers (GCC) and IDEs (Eclipse).

v

Thus, it is usually straightforward to start working with it.

OPENMP III

» Multithreading with fork-join.

» Rule of thumb: One thread per processor.

» Job of the user to remove dependencies and syncronize data.

» Heap and stack (LIFO).

» Race conditions: you can impose fence conditions and/or make some
data private to the thread.

» Remember: synchronization is expensive and loops suffer from overheads.

OPENMP IV
» Compiler directives to tell what to parallelize:

#pragma omp parallel default(shared) private(beta,pi)

» Compiler generates explicitly threaded code when OpenMP flag is
invoked (-fopenmp).

» We can always recompile without the flag and compiler directives are

ignored.

» Most implementations (although not the standard!) allow for nested

parallelization and dynamic thread changes.

PARALLELIZATION IN C-+-+ USING OPENMP

1. At compilation, add flag:

-fopenmp

2. Set environmental variable OMP_NUM_THREADS:

export OMP_NUM_THREADS=32

3. Add line before loop:

#pragma omp parallel for shared(V, ...) private(VV, ..

for(int ix=0; ix<nx; ix++){

o)

TABLE OF CONTENTS

4. PARALLELIZATION

4.6. Rcpp and OpenMP

PARALLELIZATION IN RCPP USING OPENMP

1. Write your code in C++, adding the parallelization statement

#pragma omp parallel for shared(...) private(...)

2. In the C++ code, add the following line to any function that you want
to import from R:

// [[Rcpp: :export]]

3. In R, load the Rcpp package:

library("Rcpp")

PARALLELIZATION IN RCPP USING OPENMP

4. Set the environmental variable OMP_NUM_THREADS using the

Sys.setenv() function:

Sys.setenv ("OMP_NUM_THREADS"="8")

5. Add the —fopenmp flag using Sys.setenv() function:

Sys.setenv ("PKG_CXXFLAGS"=" -fopenmp")

6. Compile and import using sourceCpp:

sourceCpp("my_file.cpp")

	Motivation
	The Model
	Parallelization Limits
	Parallelization
	Julia
	Python
	R
	Matlab
	C++ and OpenMP
	Rcpp and OpenMP

