NOTES ON PARALLELIZATION

Jesús Fernández-Villaverde David Zarruk Valencia

October 11, 2017

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

4.1. Julia

4.2. Python

4.3. R

4.4. Matlab

4.5. C++ and OpenMP

4.6. Rcpp and OpenMP

WHY PARALLEL?

- Moore's Law (1965): transistor density of semiconductor chips would double roughly every 18 months.
- Problems when transistor size falls by a factor x:
 - 1. Electricity consumption goes up by x^4 .
 - 2. Heat goes up.
 - 3. Manufacturing costs go up.
- Inherent limits on serial machines imposed by the speed of light (30 cm/ns) and transmission limit of copper wire (9 cm/ns): virtually impossible to build a serial Teraflop machine with current approach.
- Furthermore, real bottleneck is often memory access (RAM latency has only improved around 10% a year).
- Alternative: having more processors!

NUMBER OF TRANSISTORS

Transistor count

CRAY-1, 1975

SUNWAY TAIHULIGHT, 2016

PARALLEL PROGRAMMING

► Main idea⇒divide complex problem into easier parts:

- 1. Numerical computation.
- 2. Data handling (MapReduce and Hadoop).
- Two issues:
 - 1. Algorithms.
 - 2. Coding.

Some references

- Parallel Programming for Multicore and Cluster Systems by Thomas Rauber and Gudula Rünger.
- An Introduction to Parallel Programming by Peter Pacheco.
- ► Principles of Parallel Programming by Calvin Lin and Larry Snyder.
- Structured Parallel Programming: Patterns for Efficient Computation by Michael McCool, James Reinders, and Arch Robison.
- Introduction to High Performance Computing for Scientists and Engineers by Georg Hager and Gerhard Wellein.

When do we parallelize? I

- Scalability:
 - 1. Strongly scalable: problems that are inherently easy to parallelize.
 - 2. Weakly scalable: problems that are not.
- Granularity:
 - $1. \ \mbox{Coarse:} \ \mbox{more computation than communication.}$
 - 2. Fine: more communication.
- Overheads and load balancing.

GRANULARITY

Communication

When do we parallelize? II

- Whether or not the problem is easy to parallelize may depend on the way you set it up.
- Taking advantage of your architecture.
- Trade off between speed up and coding time.
- Debugging and profiling may be challenging.
- > You will need a good IDE, debugger, and profiler.

EXAMPLE I: VALUE FUNCTION ITERATION

$$egin{aligned} V\left(k
ight) &= \max_{k'} \left\{ u\left(c
ight) + eta V\left(k'
ight)
ight\} \ c &= k^lpha + (1-\delta)\,k - k' \end{aligned}$$

1. We have a grid of capital with 100 points, $k \in [k_1, k_2, ..., k_{100}]$. 2. We have a current guess $V^n(k)$.

3. We can send the problem:

$$\max_{k'} \left\{ u(c) + \beta V^{n}(k') \right\}$$
$$c = k_{1}^{\alpha} + (1 - \delta) k_{1} - k'$$

to processor 1 to get $V^{n+1}(k_1)$.

- 4. We can send similar problem for each k to each processor.
- 5. When all processors are done, we gather the $V^{n+1}(k_1)$ back.

EXAMPLE II: RANDOM WALK METROPOLIS-HASTINGS

• Draw $\theta \sim P(\cdot)$

How?

1. Given a state of the chain θ_{n-1} , we generate a proposal:

$$\theta^* = \theta_{n-1} + \lambda \varepsilon, \ \varepsilon \sim \mathcal{N}(0, 1)$$

2. We compute:

$$\alpha = \min\left\{1, \frac{P(\theta^*)}{P(\theta_{n-1})}\right\}$$

3. We set:

$$\begin{aligned} \theta_n &= \theta^* \text{ w.p. } \alpha \\ \theta_n &= \theta_{n-1} \text{ w.p. } 1 - \alpha \end{aligned}$$

- Problem: to generate θ^* we need to θ_{n-1} .
- No obvious fix (parallel chains violate the asymptotic properties of the chain).

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

4.1. Julia

4.2. Python

4.3. R

4.4. Matlab

4.5. C++ and OpenMP

4.6. Rcpp and OpenMP

LIFE-CYCLE MODEL

Households solve:

$$V(t, e, x) = \max_{\{c, x'\}} \frac{c^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}V(t+1, e', x') \quad s.t.$$
$$c + x' \le (1+r)x + ew$$
$$\mathbb{P}(e'|e) = \Gamma(e)$$
$$x' \ge 0$$
$$t \in \{1, \dots, T\}$$

Computing the Model

- 1. Choose grids for assets $X = \{x_1, \ldots, x_{n_x}\}$ and shocks $E = \{e_1, \ldots, e_{n_e}\}$.
- 2. Backwards induction:

2.1 For t = T and every $x_i \in X$ and $e_j \in E$, solve the static problem:

$$V(t, e_j, x_i) = \max_{\{c\}} u(c) \quad s.t. \quad c \le (1+r)x_i + e_j w$$

2.2 For t = T - 1, ..., 1, use $V(t + 1, e_j, x_i)$ to solve:

$$V(t, e_j, x_i) = \max_{\{c, x' \in X\}} u(c) + \beta \mathbb{E} V(t+1, e', x') \quad s.t.$$
$$c + x' \le (1+r)x_i + e_j w$$
$$\mathbb{P}(e' \in E|e_j) = \Gamma(e_j)$$

CODE STRUCTURE

```
for(age = T:-1:1)
 for(ix = 1:nx)
   for(ie = 1:ne)
     VV = -10^{3};
     for(ixp = 1:nx)
       expected = 0.0;
       if(age < T)
        for(iep = 1:ne)
           expected = expected + P[ie, iep]*V[age+1, ixp, iep];
         end
       end
       cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
       utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;
       if(cons <= 0)
         utility = -10^5;
       end
       if(utility >= VV)
         VV = utility;
       end
     end
     V[age, ix, ie] = VV;
   end
 end
end
```

IN PARALLEL

1. Set t = T.

- 2. Given t, the computation of $V(t, e_j, x_i)$ is independent of the computation of $V(t, e_{j'}, x_{i'})$, for $i \neq i', j \neq j'$.
- 3. One processor can compute $V(t, e_j, x_i)$ while another processor computes $V(t, e_{j'}, x_{i'})$.
- 4. When the different processors are done at computing $V(t, e_j, x_i)$, $\forall x_i \in X$ and $\forall e_j \in E$, set t = t 1.

5. Go to 1.

Note that the problem is not parallelizable on t. The computation of V(t, e, x) depends on V(t + 1, e, x)!

PARALLEL EXECUTION OF THE CODE

MANY WORKERS INSTEAD OF ONE

FIGURE : 1 Core Used for Computation

$\ensuremath{\operatorname{Figure}}$: 8 Cores Used for Computation

Computational Features of the Model

- $1. \ \mbox{The simplest life-cycle model}.$
- 2. Three state variables:
 - 2.1 Age.
 - 2.2 Assets.
 - 2.3 Productivity shock.
- 3. Parallelizable only on assets and shock, not on age.
- 4. May become infeasible to estimate:
 - 4.1 With more state variables:
 - Health.
 - Housing.
 - Money.
 - Different assets.
 - $4.2\,$ If embedded in a general equilibrium.

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

COSTS OF PARALLELIZATION

Amdahl's Law: the speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program.

Costs:

- Starting a thread or a process/worker.
- Transferring shared data to workers.
- Synchronizing.
- Load imbalance: for large machines, it is often difficult to use more than 10% of its computing power.

PARALLELIZATION LIMITS ON A LAPTOP

- Newest processors have:
 - 4 physical cores + 4 virtual cores = 8 logical cores

Multi-core Processors

KNOW YOUR LIMITS!

- Spend some time getting to know you laptop's limits and the problem to parallelize.
- In our life-cycle problem with many grid points, parallelization improves performance almost linearly, up to the number of physical cores.
- Parallelizing over different threads of the same physical core does not improve speed if each thread uses 100% of core capacity.
- For computationally heavy problems, adding more threads than cores available may even reduce performance.

YOUR LAPTOP IS NOT THE LIMIT!

- Many other resources:
 - Tesla server:
 - ► 61 Cores
 - Hawk server:
 - 72 Cores
 - Amazon Web Services EC2:
 - Almost as big as you want!

AMAZON WEB SERVICES

- ▶ Replace a large initial capital cost for a variable cost (use-as-needed).
- Check: https://aws.amazon.com/ec2/pricing/
 - ▶ 8 processors with 32Gb, general purpose: \$0.479 per hour.
 - ▶ 64 processors with 256Gb, compute optimized: \$3.83 per hour.

RUNNING AN INSTANCE ON AWS

- Go to: https://console.aws.amazon.com/
- Click on EC2.
- Click on Launch Instance and follow the window links (for example, Ubuntu Server 14.04).
- Public key:
 - Create a new key pair.
 - Download key.
 - ► Store it in a secure place (usually ~./ssh/).
- Run instance.

WORKING ON AWS INSTANCE

On Ubuntu terminal:

► Transfer folder from local to instance with scp:

```
$ scp -i "/path/PUBLICKEY.pem" -r "/pathfrom/FOLDER/"
ubuntu@52.3.251.249:~
```

Make sure key is not publicly available:

\$ chmod 400 "/path/PUBLICKEY.pem"

Connect to instance with ssh:

\$ ssh -i "/path/PUBLICKEY.pem" ubuntu@52.3.251.249

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS
- 4. PARALLELIZATION
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP

TWO WAYS OF PARALLELIZING

1. for loop:

- Adding a statement before a for loop that wants to be parallelized.
- 2. Map and reduce:
 - Create a function that depends on the state variables over which the problem can be parallelized:
 - In our example, we have to create a function that computes the value function for a given set of state variables.
 - Map computes in parallel the function at a vector of states.
 - Reduce combines the values returned by map in the desired way.

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS
- 4. PARALLELIZATION

4.1. Julia

- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

- > Parallelization of *for* loops is worth for "small tasks."
- "Small task" == "few computations on each parallel iteration":
 - Few control variables.
 - Few grid points on control variables.
 - Our model is a "small task."

 $1. \ \mbox{Set}$ number of workers:

addprocs(6)

2. Variables are not observable by workers ⇒ Declare the variables inside the parallel *for* loop that <u>are not</u> modified inside parallel iterations to be global:

```
@everywhere T = 10;
#...
@everywhere gridx = zeros(nx);
```

3. Declare the variables inside the parallel *for* loop that <u>are</u> modified inside parallel iterations as <u>SharedArray</u>:

4. For paralellizing a *for* loop, add <code>@parallel</code> before the <code>for</code> statement:

```
@parallel for(ix = 1:1:nx)
# ...
end
```

5. To synchronize before the code continues its execution, add @sync before the @parallel for statement:

```
@sync @parallel for(ix = 1:1:nx)
# ...
end
```

Choose appropriately the dimension(s) to parallelize:

▶ The first one is <u>much</u> faster, as there is less communication.

```
PARALLELIZATION IN JULIA - for LOOPS
```

 OR convert the problem so all state variables are computed by iterating over a one-dimensional loop:

```
@sync @parallel for(ind = 1:(ne*nx))
    ix = convert(Int, ceil(ind/ne));
    ie = convert(Int, floor(mod(ind-0.05, ne))+1);
    # ...
end
```

Communication time is minimized!

- Speed decreases with the number of global variables used.
- Very sensible to the use of large SharedArray objects.
- > Can be faster without paralellization than with large shared objects.
- See examples 1 and 2 on github

- Problems with more computations per iteration.
- Value function/life-cycle models with more computations per state:
 - Many control variables.
 - Discrete choice (marry-not marry, accept-reject work offer, default-repay, etc.).
- ► If problem is "small", using *map* for parallelization is slower.
- See examples 3 and 4 on github.

 $1. \ \mbox{Initialize number of workers:}$

```
addprocs(6)
```

2. To avoid declaring all variables as global (makes computation slower), define a structure of inputs:

```
@everywhere type modelState
    ix::Int64
    age::Int64
    # ...
end
```

3. Define a function that computes value function for a given state:

```
@everywhere function value(currentState::modelState)
ix = currentState.ix;
age = currentState.age;
# ...
VV = -10^3;
for(ixp = 1:nx)
    # ...
end
return(VV);
end
```

 The function pmap(f,s) computes the function f at every element of s in parallel:

```
for(age = T:-1:1)
    pars = [modelState(ix, age, ..., w, r) for ix in 1:nx];
    s = pmap(value,pars);
    for(ind = 1:nx)
        V[age, ix, ie] = s[ix];
    end
end
```

PARALLELIZATION IN JULIA - FINAL ADVICE

- Assess size of problem, but usually problem grows as paper evolves!
- Wrapping value function computation for every state might significantly increase speed (even more than parallelizing).

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

4.1. Julia

4.2. Python

- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

PARALLELIZATION IN PYTHON - Map

1. Use joblib package

from joblib import Parallel, delayed
import multiprocessing

2. Define a parameter structure for value function computation:

```
class modelState(object):
    def __init__(self, age, ix, ...):
        self.age = age
        self.ix = ix
        # ...
```

PARALLELIZATION IN PYTHON

 Define a function that computes value for a given input states of type modelState:

```
def value_func(states):
    nx = states.nx
    age = states.age
    # ...
    VV = math.pow(-10, 3)
    for ixp in range(0,nx):
        # ...
    return[VV];
```

PARALLELIZATION IN PYTHON

4. The function Parallel:

```
results = Parallel(n_jobs=num_cores)(delayed(value_func)
  (modelState(ix, age, ..., w, r)) for ind in
  range(0,nx*ne))
```

maps the function value_func at every element of modelState(ix, age, ..., w, r) in parallel using num_cores cores.

PARALLELIZATION IN PYTHON

5. Life-cycle model:

```
for age in reversed(range(0,T)):
    results =
        Parallel(n_jobs=num_cores)(delayed(value_func)
        (modelState(ix, age, ..., w, r)) for ix in
        range(0,nx))
    for ix in range(0,nx):
        V[age, ix] = results[ix][0];
```

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python

4.3. R

- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

PARALLELIZATION IN R - Map

1. Use package parallel:

```
library("parallel")
```

2. Create the structure of parameters for the function that computes the value for a given state as a *list*:

PARALLELIZATION IN R

3. Create the function that computes the value for a given state:

```
value = function(x){
    age = x$age
    ix = x$ix
    ...
    VV = -10^3;
    for(ixp in 1:nx){
        # ...
    }
    return(VV);
}
```

PARALLELIZATION IN R

4. Define the cluster with desired number of cores:

cl <- makeCluster(no_cores)</pre>

5. Use function parLapply(cl, states, value) to compute value at every state in states with cl cores:

```
for(age in T:1){
   states = lapply(1:nx, ...)
   for(ix in 1:nx){
      V[age, ix] = s[[ix]][1]
   }
}
```

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python
- 4.3. R

4.4. Matlab

- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

PARALLELIZATION IN MATLAB - for LOOP

Using the parallel toolbox:

1. Initialize number of workers with parpool():

parpool(6)

2. Replace the for loop with parfor:

```
for age = T:-1:1
    parfor ie = 1:1:ne
        % ...
    end
end
```

PARALLELIZATION IN MATLAB

- Extremely easy.
- Also simple to extend to GPU.
- There is no free lunch \implies very poor performance.

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab

4.5. C++ and OpenMP

4.6. Rcpp and OpenMP

OpenMP I

- Open specifications for multi-processing.
- ▶ It has been around for two decades. Current version 4.5.
- Official web page: http://openmp.org/wp/
- Tutorial: https://computing.llnl.gov/tutorials/openMP/
- Using OpenMP: Portable Shared Memory Parallel Programming by Barbara Chapman, Gabriele Jost, and Ruud van der Pas.
- Fast to learn, reduced set of instructions, easy to code, but you need to worry about contention and cache coherence.

OpenMP II

- API for multi-processor/core, shared memory machines defined by a group of major computer hardware and software vendors.
- C++ and Fortran. Extensions to other languages.
- For example, you can have OpenMP in Mex files in Matlab.
- Supported by major compilers (GCC) and IDEs (Eclipse).
- ► Thus, it is usually straightforward to start working with it.

OpenMP III

- Multithreading with fork-join.
- Rule of thumb: One thread per processor.
- > Job of the user to remove dependencies and syncronize data.
- Heap and stack (LIFO).
- Race conditions: you can impose fence conditions and/or make some data private to the thread.
- Remember: synchronization is expensive and loops suffer from overheads.

OpenMP IV

Compiler directives to tell what to parallelize:

#pragma omp parallel default(shared) private(beta,pi)

- Compiler generates explicitly threaded code when OpenMP flag is invoked (-fopenmp).
- We can always recompile without the flag and compiler directives are ignored.
- Most implementations (although not the standard!) allow for nested parallelization and dynamic thread changes.

PARALLELIZATION IN C++ USING OPENMP

1. At compilation, add flag:

-fopenmp

2. Set environmental variable OMP_NUM_THREADS:

export OMP_NUM_THREADS=32

3. Add line before loop:

```
#pragma omp parallel for shared(V, ...) private(VV, ...)
for(int ix=0; ix<nx; ix++){
   // ...
}</pre>
```

TABLE OF CONTENTS

1. MOTIVATION

2. The Model

3. PARALLELIZATION LIMITS

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

PARALLELIZATION IN RCPP USING OPENMP

1. Write your code in C++, adding the parallelization statement

#pragma omp parallel for shared(...) private(...)

2. In the C++ code, add the following line to any function that you want to import from R:

// [[Rcpp::export]]

3. In R, load the Rcpp package:

library("Rcpp")

PARALLELIZATION IN RCPP USING OPENMP

 Set the environmental variable OMP_NUM_THREADS using the Sys.setenv() function:

Sys.setenv("OMP_NUM_THREADS"="8")

5. Add the -fopenmp flag using Sys.setenv() function:

Sys.setenv("PKG_CXXFLAGS"=" -fopenmp")

6. Compile and import using sourceCpp:

sourceCpp("my_file.cpp")