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Why parallel?
I Moore’s Law (1965): transistor density of semiconductor chips would

double roughly every 18 months.

I Problems when transistor size falls by a factor x :

1. Electricity consumption goes up by x4.

2. Heat goes up.

3. Manufacturing costs go up.

I Inherent limits on serial machines imposed by the speed of light (30
cm/ns) and transmission limit of copper wire (9 cm/ns): virtually
impossible to build a serial Teraflop machine with current approach.

I Furthermore, real bottleneck is often memory access (RAM latency has
only improved around 10% a year).

I Alternative: having more processors!



Number of transistors



Cray-1, 1975



Sunway TaihuLight, 2016



Parallel programming

I Main idea⇒divide complex problem into easier parts:

1. Numerical computation.

2. Data handling (MapReduce and Hadoop).

I Two issues:

1. Algorithms.

2. Coding.



Some references

I Parallel Programming for Multicore and Cluster Systems by Thomas
Rauber and Gudula Rünger.

I An Introduction to Parallel Programming by Peter Pacheco.

I Principles of Parallel Programming by Calvin Lin and Larry Snyder.

I Structured Parallel Programming: Patterns for Efficient Computation by
Michael McCool, James Reinders, and Arch Robison.

I Introduction to High Performance Computing for Scientists and
Engineers by Georg Hager and Gerhard Wellein.



When do we parallelize? I

I Scalability:

1. Strongly scalable: problems that are inherently easy to parallelize.

2. Weakly scalable: problems that are not.

I Granularity:

1. Coarse: more computation than communication.

2. Fine: more communication.

I Overheads and load balancing.



Granularity



When do we parallelize? II

I Whether or not the problem is easy to parallelize may depend on the way
you set it up.

I Taking advantage of your architecture.

I Trade off between speed up and coding time.

I Debugging and profiling may be challenging.

I You will need a good IDE, debugger, and profiler.



Example I: value function iteration

V (k) = max
k ′

{
u (c) + βV

(
k ′
)}

c = kα + (1− δ) k − k ′

1. We have a grid of capital with 100 points, k ∈ [k1, k2, ..., k100] .

2. We have a current guess V n (k) .

3. We can send the problem:

max
k ′

{
u (c) + βV n (k ′)}

c = kα1 + (1− δ) k1 − k ′

to processor 1 to get V n+1 (k1) .

4. We can send similar problem for each k to each processor.

5. When all processors are done, we gather the V n+1 (k1) back.



Example II: random walk Metropolis-Hastings

I Draw θ ∼ P (·)
I How?

1. Given a state of the chain θn−1, we generate a proposal:

θ∗ = θn−1 + λε, ε ∼ N (0, 1)

2. We compute:

α = min
{
1,

P (θ∗)

P (θn−1)

}
3. We set:

θn = θ∗ w .p. α

θn = θn−1 w .p. 1− α

I Problem: to generate θ∗ we need to θn−1.
I No obvious fix (parallel chains violate the asymptotic properties of the

chain).
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Life-Cycle Model

I Households solve:

V (t, e, x) = max
{c,x ′}

c1−σ

1− σ
+ βEV (t + 1, e ′, x ′) s.t.

c + x ′ ≤ (1 + r)x + ew

P(e ′|e) = Γ(e)

x ′ ≥ 0

t ∈ {1, . . . ,T}



Computing the Model

1. Choose grids for assets X = {x1, . . . , xnx} and shocks E = {e1, . . . , ene}.

2. Backwards induction:

2.1 For t = T and every xi ∈ X and ej ∈ E , solve the static problem:

V (t, ej , xi ) = max
{c}

u(c) s.t. c ≤ (1 + r)xi + ejw

2.2 For t = T − 1, . . . , 1, use V (t + 1, ej , xi ) to solve:

V (t, ej , xi ) = max
{c,x′∈X}

u(c) + βEV (t + 1, e′, x ′) s.t.

c + x ′ ≤ (1 + r)xi + ejw

P(e′ ∈ E |ej) = Γ(ej)



Code Structure
for(age = T:-1:1)
for(ix = 1:nx)
for(ie = 1:ne)
VV = -10^3;
for(ixp = 1:nx)

expected = 0.0;
if(age < T)
for(iep = 1:ne)
expected = expected + P[ie, iep]*V[age+1, ixp, iep];

end
end

cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;

if(cons <= 0)
utility = -10^5;

end
if(utility >= VV)
VV = utility;

end
end
V[age, ix, ie] = VV;

end
end

end



In Parallel

1. Set t = T .

2. Given t, the computation of V (t, ej , xi ) is independent of the
computation of V (t, ej ′ , xi ′), for i 6= i ′, j 6= j ′.

3. One processor can compute V (t, ej , xi ) while another processor
computes V (t, ej ′ , xi ′).

4. When the different processors are done at computing V (t, ej , xi ),
∀xi ∈ X and ∀ej ∈ E , set t = t − 1.

5. Go to 1.

Note that the problem is not parallelizable on t. The computation of
V (t, e, x) depends on V (t + 1, e, x)!



Parallel Execution of the Code



Many Workers Instead of One
Figure : 1 Core Used for Computation

Figure : 8 Cores Used for Computation



Computational Features of the Model

1. The simplest life-cycle model.

2. Three state variables:
2.1 Age.
2.2 Assets.
2.3 Productivity shock.

3. Parallelizable only on assets and shock, not on age.

4. May become infeasible to estimate:
4.1 With more state variables:

I Health.
I Housing.
I Money.
I Different assets.

4.2 If embedded in a general equilibrium.
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Costs of Parallelization

I Amdahl’s Law: the speedup of a program using multiple processors in
parallel computing is limited by the time needed for the sequential
fraction of the program.

I Costs:
I Starting a thread or a process/worker.

I Transferring shared data to workers.

I Synchronizing.

I Load imbalance: for large machines, it is often difficult to use more than
10% of its computing power.



Parallelization Limits on a Laptop
I Newest processors have:

4 physical cores + 4 virtual cores = 8 logical cores



Multi-core Processors



Know Your Limits!

I Spend some time getting to know you laptop’s limits and the problem to

parallelize.

I In our life-cycle problem with many grid points, parallelization improves

performance almost linearly, up to the number of physical cores.

I Parallelizing over different threads of the same physical core does not

improve speed if each thread uses 100% of core capacity.

I For computationally heavy problems, adding more threads than cores

available may even reduce performance.



Your Laptop is Not the Limit!

I Many other resources:

I Tesla server:

I 61 Cores

I Hawk server:

I 72 Cores

I Amazon Web Services - EC2:

I Almost as big as you want!



Amazon Web Services

I Replace a large initial capital cost for a variable cost (use-as-needed).

I Check: https://aws.amazon.com/ec2/pricing/

I 8 processors with 32Gb, general purpose: $0.479 per hour.

I 64 processors with 256Gb, compute optimized: $3.83 per hour.



Running an Instance on AWS

I Go to: https://console.aws.amazon.com/

I Click on EC2.

I Click on Launch Instance and follow the window links (for example,

Ubuntu Server 14.04).

I Public key:

I Create a new key pair.

I Download key.

I Store it in a secure place (usually ∼./ssh/).

I Run instance.



Working on AWS instance
On Ubuntu terminal:

I Transfer folder from local to instance with scp:

$ scp -i "/path/PUBLICKEY.pem" -r "/pathfrom/FOLDER/"

ubuntu@52.3.251.249:~

I Make sure key is not publicly available:

$ chmod 400 "/path/PUBLICKEY.pem"

I Connect to instance with ssh:

$ ssh -i "/path/PUBLICKEY.pem" ubuntu@52.3.251.249
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Two Ways of Parallelizing

1. for loop:

I Adding a statement before a for loop that wants to be parallelized.

2. Map and reduce:

I Create a function that depends on the state variables over which the

problem can be parallelized:

I In our example, we have to create a function that computes the value

function for a given set of state variables.

I Map computes in parallel the function at a vector of states.

I Reduce combines the values returned by map in the desired way.
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Parallelization in Julia - for loops

I Parallelization of for loops is worth for “small tasks.”

I “Small task” == “few computations on each parallel iteration”:

I Few control variables.

I Few grid points on control variables.

I Our model is a “small task.”



Parallelization in Julia - for loops

1. Set number of workers:

addprocs(6)

2. Variables are not observable by workers =⇒ Declare the variables inside
the parallel for loop that are not modified inside parallel iterations to be
global:

@everywhere T = 10;
#...
@everywhere gridx = zeros(nx);

3. Declare the variables inside the parallel for loop that are modified inside
parallel iterations as SharedArray:

V = SharedArray(Float64, (T, nx, ne),
init = V -> V[Base.localindexes(V)] = myid());



Parallelization in Julia - for loops

4. For paralellizing a for loop, add @parallel before the for statement:

@parallel for(ix = 1:1:nx)
# ...

end

5. To synchronize before the code continues its execution, add @sync

before the @parallel for statement:

@sync @parallel for(ix = 1:1:nx)
# ...

end



Parallelization in Julia - for loops

I Choose appropriately the dimension(s) to parallelize:

nx = 350;
ne = 9;
for(ie = 1:ne)
@sync @parallel for(ix = 1:nx)
# ...

end
end

nx = 350;
ne = 9;
for(ix = 1:nx)
@sync @parallel for(ie = 1:ne)
# ...

end
end

I The first one is much faster, as there is less communication.



Parallelization in Julia - for loops

I OR convert the problem so all state variables are computed by iterating
over a one-dimensional loop:

@sync @parallel for(ind = 1:(ne*nx))
ix = convert(Int, ceil(ind/ne));
ie = convert(Int, floor(mod(ind-0.05, ne))+1);
# ...

end

I Communication time is minimized!



Parallelization in Julia - for loops

I Speed decreases with the number of global variables used.

I Very sensible to the use of large SharedArray objects.

I Can be faster without paralellization than with large shared objects.

I See examples 1 and 2 on github



Parallelization in Julia - Map

I Problems with more computations per iteration.

I Value function/life-cycle models with more computations per state:
I Many control variables.

I Discrete choice (marry-not marry, accept-reject work offer, default-repay,

etc.).

I If problem is “small”, using map for parallelization is slower.

I See examples 3 and 4 on github.



Parallelization in Julia - Map

1. Initialize number of workers:

addprocs(6)

2. To avoid declaring all variables as global (makes computation slower),
define a structure of inputs:

@everywhere type modelState
ix::Int64
age::Int64
# ...

end



Parallelization in Julia - Map

3. Define a function that computes value function for a given state:

@everywhere function value(currentState::modelState)
ix = currentState.ix;
age = currentState.age;
# ...
VV = -10^3;
for(ixp = 1:nx)

# ...
end
return(VV);

end



Parallelization in Julia - Map

4. The function pmap(f,s) computes the function f at every element of s
in parallel:

for(age = T:-1:1)
pars = [modelState(ix, age, ..., w, r) for ix in 1:nx];
s = pmap(value,pars);
for(ind = 1:nx)

V[age, ix, ie] = s[ix];
end

end



Parallelization in Julia - Final advice

I Assess size of problem, but usually problem grows as paper evolves!

I Wrapping value function computation for every state might significantly

increase speed (even more than parallelizing).
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Parallelization in Python - Map

1. Use joblib package

from joblib import Parallel, delayed
import multiprocessing

2. Define a parameter structure for value function computation:

class modelState(object):
def __init__(self, age, ix, ...):

self.age = age
self.ix = ix
# ...



Parallelization in Python

3. Define a function that computes value for a given input states of type
modelState:

def value_func(states):
nx = states.nx
age = states.age
# ...
VV = math.pow(-10, 3)
for ixp in range(0,nx):

# ...
return[VV];



Parallelization in Python

4. The function Parallel:

results = Parallel(n_jobs=num_cores)(delayed(value_func)
(modelState(ix, age, ..., w, r)) for ind in
range(0,nx*ne))

maps the function value_func at every element of modelState(ix,
age, . . . , w, r) in parallel using num_cores cores.



Parallelization in Python

5. Life-cycle model:

for age in reversed(range(0,T)):
results =

Parallel(n_jobs=num_cores)(delayed(value_func)
(modelState(ix, age, ..., w, r)) for ix in
range(0,nx))

for ix in range(0,nx):
V[age, ix] = results[ix][0];
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Parallelization in R - Map

1. Use package parallel:

library("parallel")

2. Create the structure of parameters for the function that computes the
value for a given state as a list:

states = lapply(1:nx, function(x) list(age=age,ix=x,
...,r=r))



Parallelization in R

3. Create the function that computes the value for a given state:

value = function(x){
age = x$age
ix = x$ix
...
VV = -10^3;
for(ixp in 1:nx){

# ...
}
return(VV);

}



Parallelization in R

4. Define the cluster with desired number of cores:

cl <- makeCluster(no_cores)

5. Use function parLapply(cl, states, value) to compute value at
every state in states with cl cores:

for(age in T:1){
states = lapply(1:nx, ...)
for(ix in 1:nx){
V[age, ix] = s[[ix]][1]

}
}
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Parallelization in Matlab - for loop

Using the parallel toolbox:

1. Initialize number of workers with parpool():

parpool(6)

2. Replace the for loop with parfor:

for age = T:-1:1
parfor ie = 1:1:ne

% ...
end

end



Parallelization in Matlab

I Extremely easy.

I Also simple to extend to GPU.

I There is no free lunch =⇒ very poor performance.
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OpenMP I

I Open specifications for multi-processing.

I It has been around for two decades. Current version 4.5.

I Official web page: http://openmp.org/wp/

I Tutorial: https://computing.llnl.gov/tutorials/openMP/

I Using OpenMP: Portable Shared Memory Parallel Programming by
Barbara Chapman, Gabriele Jost, and Ruud van der Pas.

I Fast to learn, reduced set of instructions, easy to code, but you need to
worry about contention and cache coherence.



OpenMP II

I API for multi-processor/core, shared memory machines defined by a
group of major computer hardware and software vendors.

I C++ and Fortran. Extensions to other languages.

I For example, you can have OpenMP in Mex files in Matlab.

I Supported by major compilers (GCC) and IDEs (Eclipse).

I Thus, it is usually straightforward to start working with it.



OpenMP III

I Multithreading with fork-join.

I Rule of thumb: One thread per processor.

I Job of the user to remove dependencies and syncronize data.

I Heap and stack (LIFO).

I Race conditions: you can impose fence conditions and/or make some
data private to the thread.

I Remember: synchronization is expensive and loops suffer from overheads.



OpenMP IV

I Compiler directives to tell what to parallelize:

#pragma omp parallel default(shared) private(beta,pi)

I Compiler generates explicitly threaded code when OpenMP flag is
invoked (-fopenmp).

I We can always recompile without the flag and compiler directives are
ignored.

I Most implementations (although not the standard!) allow for nested
parallelization and dynamic thread changes.



Parallelization in C++ using OpenMP

1. At compilation, add flag:

-fopenmp

2. Set environmental variable OMP_NUM_THREADS:

export OMP_NUM_THREADS=32

3. Add line before loop:

#pragma omp parallel for shared(V, ...) private(VV, ...)
for(int ix=0; ix<nx; ix++){

// ...
}
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Parallelization in Rcpp using OpenMP

1. Write your code in C++, adding the parallelization statement

#pragma omp parallel for shared(...) private(...)

2. In the C++ code, add the following line to any function that you want
to import from R:

// [[Rcpp::export]]

3. In R, load the Rcpp package:

library("Rcpp")



Parallelization in Rcpp using OpenMP

4. Set the environmental variable OMP_NUM_THREADS using the
Sys.setenv() function:

Sys.setenv("OMP_NUM_THREADS"="8")

5. Add the −fopenmp flag using Sys.setenv() function:

Sys.setenv("PKG_CXXFLAGS"=" -fopenmp")

6. Compile and import using sourceCpp:

sourceCpp("my_file.cpp")
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