

Perturbation Methods IV: Perturbing the value function

(Lectures on Solution Methods for Economists VIII)

Jesús Fernández-Villaverde, ¹ Pablo Guerrón, ² and David Zarruk Valencia ³ October 24, 2018

¹University of Pennsylvania

²Boston College

³ITAM

Perturbing the value function

- We worked with the equilibrium conditions of the model.
- Sometimes we may want to perform a perturbation on the value function formulation of the problem.
- Possible reasons:
 - 1. Gain insight.
 - 2. Difficulty in using equilibrium conditions.
 - 3. Evaluate welfare.
 - 4. Initial guess for VFI.
- More general point: we can perturb any operator problem that we find useful.

Basic problem

• The previous problem in recursive form:

$$\begin{split} V\left(k_{t}, z_{t}\right) &= \max_{c_{t}} \left[\log c_{t} + \beta \mathbb{E}_{t} V\left(k_{t+1}, z_{t+1}\right)\right] \\ &\text{s.t. } c_{t} + k_{t+1} = e^{z_{t}} k_{t}^{\alpha} \\ z_{t} &= \rho z_{t-1} + \sigma \varepsilon_{t}, \ \varepsilon_{t} \sim \mathcal{N}\left(0, 1\right) \end{split}$$

• Write it as:

$$\begin{split} V\left(k_{t}, z_{t}; \lambda\right) &= \\ \max_{c_{t}} \left[\log c_{t} + \beta \mathbb{E}_{t} V\left(e^{z_{t}} k_{t}^{\alpha} - c_{t}, \rho z_{t} + \lambda \sigma \varepsilon_{t+1}; \lambda\right)\right] \end{split}$$

• The solution of this problem is value function $V(k_t, z_t; \lambda)$ and a policy function for consumption $c(k_t, z_t; \lambda)$.

Expanding the value function

The second-order Taylor approximation of the value function around the deterministic steady state (k, 0; 0) is:

$$V(k_{t}, z_{t}; \lambda) \simeq V_{ss} + V_{1,ss}(k_{t} - k_{ss}) + V_{2,ss}z_{t} + V_{3,ss}\lambda + \frac{1}{2}V_{11,ss}(k_{t} - k)^{2} + \frac{1}{2}V_{12,ss}(k_{t} - k)z_{t} + \frac{1}{2}V_{13,ss}(k_{t} - k)\lambda + \frac{1}{2}V_{21,ss}z_{t}(k_{t} - k) + \frac{1}{2}V_{22,ss}z_{t}^{2} + \frac{1}{2}V_{23,ss}z_{t}\lambda + \frac{1}{2}V_{31,ss}\lambda(k_{t} - k) + \frac{1}{2}V_{32,ss}\lambda z_{t} + \frac{1}{2}V_{33,ss}^{2}\lambda^{2}$$

where

$$V_{ss} = V(k,0;0)$$

 $V_{i,ss} = V_i(k,0;0)$ for $i = \{1,2,3\}$
 $V_{ij,ss} = V_{ij}(k,0;0)$ for $i,j = \{1,2,3\}$

Expanding the value function

By certainty equivalence, we will show below that:

$$V_{3,ss} = V_{13,ss} = V_{23,ss} = 0$$

• Taking advantage of the equality of cross-derivatives, and setting $\lambda = 1$, which is just a normalization:

$$V(k_{t}, z_{t}; 1) \simeq V_{ss} + V_{1,ss}(k_{t} - k) + V_{2,ss}z_{t}$$

$$+ \frac{1}{2}V_{11,ss}(k_{t} - k)^{2} + \frac{1}{2}V_{22,ss}z_{tt}^{2}$$

$$+ V_{12,ss}(k_{t} - k)z + \frac{1}{2}V_{33,ss} + \dots$$

• Note that $V_{33,ss} \neq 0$, a difference from the standard linear-quadratic approximation to the utility functions.

4

Expanding the consumption function

• The policy function for consumption can be expanded as:

$$c_t = c(k_t, z_t; \lambda) \simeq c_{ss} + c_{1,ss}(k_t - k) + c_{2,ss}z_t + c_{3,ss}\chi + ...$$

where:

$$c_{1,ss} = c_1 (k_{ss}, 0; 0)$$

$$c_{2,ss} = c_2 (k_{ss}, 0; 0)$$

$$c_{3,ss} = c_3 (k_{ss}, 0; 0)$$

• Since the first derivatives of the consumption function only depend on the first and second derivatives of the value function, we must have that $c_{3,ss}=0$ (precautionary consumption depends on the third derivative of the value function, Kimball, 1990).

Linear components of the value function

• As before, we first find the steady state of the model:

$$k = (\alpha \beta)^{\frac{1}{1-\alpha}}$$

$$c = (\alpha \beta)^{\frac{\alpha}{1-\alpha}} - (\alpha \beta)^{\frac{1}{1-\alpha}}$$

$$V_{ss} = \frac{\log c}{1-\beta}$$

 We substitute the decision rules into the value function and drop the max operator:

$$V(k_{t}, z_{t}; \lambda) - \log c(k_{t}, z_{t}; \lambda)$$
$$+\beta \mathbb{E}_{t} V(e^{z_{t}} k_{t}^{\alpha} - c(k_{t}, z_{t}; \lambda), \rho z_{t} + \lambda \sigma \varepsilon_{t+1}; \lambda) = 0$$

• We take derivatives of the value function with respect to the control (c_t) , the states (k_t, z_t) , and the perturbation parameter λ .

Derivatives

• Derivative with respect to c_t:

$$c_t^{-1} - \beta \mathbb{E}_t V_{1,t+1} = 0$$

• Derivative with respect to k_t :

$$V_{1,t} = \beta \mathbb{E}_t V_{1,t+1} \left(\alpha e^{z_t} k_t^{\alpha - 1} \right)$$

• Derivative with respect to **z**_t:

$$V_{2,t} = \beta \mathbb{E}_t \left[V_{1,t+1} e^{z_t} k_t^{\alpha} + \rho V_{2,t+1} \right]$$

• Derivative with respect to λ :

$$V_{3,t} = \beta \mathbb{E}_t \left[V_{2,t+1} \sigma \varepsilon_{t+1} + V_{3,t+1} \right]$$

• We apply the envelope theorem to eliminate the derivatives of consumption with respect to k_t , z_t , and λ .

System of equations I

Now, we have the system:

$$\begin{aligned} c_t^{-1} - \beta \mathbb{E}_t V_{1,t+1} &= 0 \\ V_{1,t} &= \beta \mathbb{E}_t V_{1,t+1} \alpha e^{z_t} k_t^{\alpha - 1} \\ V_{2,t} &= \beta \mathbb{E}_t \left[V_{1,t+1} e^{z_t} k_t^{\alpha} + \rho V_{2,t+1} \right] \\ V_{3,t} &= \beta \mathbb{E}_t \left[V_{2,t+1} \sigma \varepsilon_{t+1} + V_{3,t+1} \right] \\ z_t &= \rho z_{t-1} + \lambda \sigma \varepsilon_t \end{aligned}$$

System of equations II

If we set $\lambda=0$ and compute the steady state, we get a system of four equations on four unknowns, k, $V_{1,ss}$, $V_{2,ss}$, and $V_{3,ss}$:

$$\frac{1}{c} - \beta V_{1,ss} = 0$$

$$V_{1,ss} = \beta V_{1,ss} \alpha k^{\alpha - 1}$$

$$V_{2,ss} = \beta \left[V_{1,ss} k^{\theta} + \rho V_{2,ss} \right]$$

$$V_{3,ss} = \beta V_{3,ss}$$

- Then:
 - 1. $V_{1,ss} = \frac{1}{\beta c} > 0$.
 - 2. $V_{2,ss} = \frac{\beta}{1-\beta\rho} \frac{k^{\alpha}}{c} = \frac{\beta}{(1-\alpha\beta)(1-\beta\rho)} > 0.$
 - 3. $V_{3,ss} = 0$.

Quadratic components of the value function

From the previous derivations, we have:

$$\begin{aligned} c_t^{-1} - \beta \mathbb{E}_t V_{1,t+1} &= 0 \\ V_{1,t} &= \beta \mathbb{E}_t V_{1,t+1} \alpha e^{z_t} k_t^{\alpha - 1} \\ V_{2,t} &= \beta \mathbb{E}_t \left[V_{1,t+1} e^{z_t} k_t^{\alpha} + \rho V_{2,t+1} \right] \\ V_{3,t} &= \beta \mathbb{E}_t \left[V_{2,t+1} \sigma \varepsilon_{t+1} + V_{3,t+1} \right] \end{aligned}$$

- We will now take derivatives of each of the four equations with respect to k_t, z_t , and λ .
- We will take advantage of the equality of cross derivatives.
- The envelope theorem does not hold anymore (we are taking derivatives of the derivatives of the value function).

The welfare cost of the business cycle

- An advantage of performing the perturbation on the value function is that we have evaluation of welfare readily available.
- Note that at the deterministic steady state, we have:

$$V(k,0;\chi) \simeq V_{ss} + \frac{1}{2}V_{33,ss}$$

- Hence $\frac{1}{2}V_{33,ss}$ is a measure of the welfare cost of the business cycle.
- Note that this quantity is not necessarily negative. Indeed, it may well be
 positive in many models, like in a RBC with leisure choice. See Cho and Cooley
 (2000).

Our example

- We know that $V_{ss} = \frac{\log c}{1-\beta}$.
- Then, we can compute the decrease in consumption τ that will make the household indifferent between consuming $(1 \tau)c$ units per period with certainty or c_t units with uncertainty.
- To do so, note that:

$$\frac{\log c}{1-\beta} + \frac{1}{2}V_{33,ss} = \frac{\log c}{1-\beta} + \frac{\log(1-\tau)}{1-\beta} \Rightarrow$$
$$\tau = 1 - \exp\left(\frac{1-\beta}{2}V_{33,ss}\right)$$

A numerical example I

• A more realistic example

$$V(k_{t}, z_{t}) = \max_{c_{t}} \left[(1 - \beta) \frac{c_{t}^{1 - \gamma}}{1 - \gamma} + \beta \mathbb{E}_{t} V(k_{t+1}, z_{t+1}) \right]$$

$$\text{s.t. } c_{t} + k_{t+1} = e^{z_{t}} k_{t}^{\theta} + (1 - \delta) k_{t}$$

$$z_{t} = \rho z_{t-1} + \sigma \varepsilon_{t}, \ \varepsilon_{t} \sim \mathcal{N}(0, 1)$$

We pick standard parameter values by setting

$$\beta = 0.99, \gamma = 2, \delta = 0.0294, \theta = 0.3, \text{ and } \rho = 0.95.$$

A numerical example II

• Then, we get:

$$V(k_t, z_t; 1) \simeq -0.54000 + 0.00295 (k_t - k_{ss}) + 0.11684 z_t$$

$$-0.00007 (k_t - k_{ss})^2 - 0.00985 z_t^2$$

$$-0.97508 - 0.00225 (k_t - k_{ss}) z_t$$

$$c(k_t, z_t; 1) \simeq 1.85193 + 0.04220 (k_t - k_{ss}) + 0.74318 z_t$$

- Also, the consumption equivalent of the welfare cost of the business cycle is 8.8475e-005, even lower than Lucas' (1987) original computation because of the smoothing possibilities implied by the presence of capital.
- Use as an initial guess for VFI.