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Introduction



Introduction

e Remember that we want to solve a functional equations of the form:
H(d)=0

for an unknown decision rule d.

e Perturbation solves the problem by specifying:

d” (x,9) = 29, (X — Xo)i
i=0

e We use implicit-function theorems to find coefficients 6;'s.

e Inherently local approximation. Often good global properties.



e Many complicated mathematical problems have:
1. either a particular case
2. or a related problem.
that is easy to solve.

e Often, we can use the solution of the simpler problem as a building block of the
general solution.

e Very successful in physics.

e Sometimes perturbation is known as asymptotic methods.



A simple example

e Imagine we want to compute /26 by hand.
e We do not remember how to do it.

e But, we note that

V26 = /25 % 1.04 = V25 + V/1.04 = 5% v/1.04 ~ 5% 1.02 = 5.1

Exact solution: v/26 = 5.09902.

e More in general:

Vi=Vr A+ =y VAT my*(1+0)

Accuracy depends on how big ¢ is.



Applications in economics

e Judd and Guu (1993) showed how to apply it to economic problems.
e Recently, perturbation methods have been gaining much popularity.

e In particular, second- and third-order approximations are easy to compute and
notably improve accuracy.

e Perturbation theory is the generalization of the well-known linearization
strategy.

e Hence, we can use much of what we already know about linearization.



Regular versus singular perturbations

e Regular perturbation: a small change in the problem induces a small change in
the solution.

e Singular perturbation: a small change in the problem induces a large change in
the solution.

e Example: excess demand function.
e Most problems in economics involve regular perturbations.

e Sometimes, however, we can have singularities. Example: introducing a new
asset in an incomplete market model.
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An Economics Application



Stochastic neoclassical growth model

oo
max Eq Z Bt log c;
=0

s.t. ¢ + kt+1 = eztkta, Vt>0
7zt = pze_1 + oer, €0 ~ N(0,1)

e Note: full depreciation.

e Equilibrium conditions:

1 1
- = BEt
Ct Ct+1

Ct + kep1 = ek

oe’tt! kfj:ll

Zy = pZt—1 + 0&y



Solution and steady state

e Exact solution (found by “guess and verify”):

¢ =(1—ap)etk?

kt+1 = Oéﬂezt kta

e Steady state is also easy to find:

k=(ap)™

¢ = (af)™% — (af) ™
z=0

e Steady state in more general models.



The goal

e We are searching for decision rules:

d: Ct = C(kt,zt)
kf+1 = k(kt7zt)

e Then, we have:
I SE aePrtose k(K z,)* 7!
c (ke, zt) tC(k (kt, zt) , pzt + 0€ri1)
C(kt,Zt) + k (kt, Zt) = lekta

e This is a system of functional equations.



A perturbation solution

e Rewrite the problem in terms of perturbation parameter .

e Different possibilities for A. For this case, | pick:

zt = pze_1 + Aoey, e ~ N(0,1)

1. When X\ = 1, stochastic case.

2. When X\ = 0, deterministic case (with zo = 0 and then e* = 1).

e Now we are searching for the decision rules:

Ct = C(kt,Zt;)\)
key1 = k(ktvzt; )\)
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Taylor’s theorem

e We will build a local approximation around (k,0;0).

e Given equilibrium conditions:

s (1 etz )
¢ (keyzes A) c(k(keyzei ), pze + Aoeei1; A)

c(ke,ze; A) + k (keyze A) — ek =0

We will take derivatives with respect to k;, z;, and A\ and evaluate them around
(k,0;0).

o Why?

e Apply Taylor's theorem and a version of the implicit-function theorem.

11



Asymptotic expansion |

¢ = c(ke, 2z 1)|k’070 = c(k,0;0)
i (k, 0;0) (ke — k) + ¢, (K, 0;0) z + cx (k, 0; 0)

1 1
5 G (k. 0.0) (ke - k) + 5 Gz (K, 0;0) (ke — k) z¢

1Ck)\ (k 0; O) (k k)+1Czk (k,O;O)Zt(ktfk)

2 2
1 , 1
+§sz(k70;0)2t +§CZ/\ (k,OvO)Zt
1 1
2C)\k (k,0;0) (ke — k)JrECAZ(k.,O; 0) Az

1
+§C)\2 (k70; 0) +
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Asymptotic expansion |l

kevi = k(ke,ze;1)|, 00 = Kk (k,0;0)
+ki (k,0;0) (ke — k) + k, (k,0;0) z: + kx (k,0;0)

1 1

5 ki (k,0;0) (ke — k)* + 5 Kz (k,0:0) (ke — k) z¢
1 1

+5kiex (K, 0;0) (ke — k) + 5 ke (k. 00) z¢ (ke — k)
1 , 1

+§kzz(ka0;0)zt +§k2)\ (k,0,0)Zt

1 1
+§kkk (k,0;0) (ke — k) + §k>\z (k,0;0) z

1
ke (k,0:0) + ...
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Comment on notation

e From now on, to save on notation, we will write

1 _ /[3aepzﬁ»knsprlk(kt’zt;A)a—l 0
c(ke,zesN) c(k(ke,ze;N),pze+Aoeri1;0) —

¢ (ke,ze; N) + k (key ze; A) — ek 0

F (kf7zt; A) = Et

e Note that:

F (kt»Zt; )\) =H (Cn Cei1, ke, Ke1, 2t >\)
=H (C (khzt; )\) , € (k (kt7 Zt; )\) y Zt+1s )\) ) kh k (khzt; )\) s Zts )\)

e | will use H; to represent the partial derivative of H with respect to the /
component and drop the evaluation at the steady state of the functions when

we do not need it.
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First-order approximation

e \We take derivatives of F (k¢, z;; \) around k,0, and 0.

e With respect to k;:

Fi (k,0;0) =0
e With respect to z:

F;(k,0;0) =0
e With respect to \:

Fx(k,0;0) =0
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Solving the system |

e Remember that:

F(kt7zt; )\) =
H (C (khzt; )\) 5(e (k (kta Zt, )\) 5y Z4+1; )\) ; kt7 k (kth; A) s Zt, )\) =0

e Because F (k¢, z:; ) must be equal to zero for any possible values of ki, z¢, and
A, the derivatives of any order of F must also be zero.

e Then:

Fi (k,O; 0) = Hick + Hockki + Hz + Hakie =0
Fz(kaoyo) = chz +H2 (Ckkz I Czp) +H4kz +H5 =0
Fy (k./O;O) =Hicy + Ho (Ckk)\ + C)\) + Haky +He =0
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Solving the system Il

e Note that:
Fi (k,0;0) = Hyick + Hockkx + Hz + Hake =0
F, (k,0;0) = Hic, + Ho (ckks + c.p) + Hak, + Hs =0
is a quadratic system of four equations on four unknowns: ¢, c,, kg, and k.

e Procedures to solve quadratic systems:

1. Blanchard and Kahn (1980).

2. Uhlig (1999).

3. Sims (2000).

4. Klein (2000).
e All of them equivalent.

e Why quadratic? Stable and unstable manifold. 17



Solving the system IlI

e Also, note that:
F (k.,O;O) =Hicy + Ho (CkkA + C>\) + Haky +He =0
is a linear and homogeneous system in ¢y and k.

e Hence:
C)\ = kA =10

e This means the system is certainty equivalent.
e Interpretation=-no precautionary behavior.

e Difference between risk-aversion and precautionary behavior. Leland (1968),
Kimball (1990).

e Risk-aversion depends on the second derivative (concave utility).

e Precautionary behavior depends on the third derivative (convex marginal
utility).
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Comparison with linearization

e After Kydland and Prescott (1982) a popular method to solve economic models
has been the use of a LQ approximation of the objective function of the agents.

e Close relative: linearization of equilibrium conditions.

e When properly implemented linearization, LQ, and first-order perturbation are
equivalent.

e Advantages of linearization:

1. Theorems.

2. Higher order terms.
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Second-order approximation

e We take second-order derivatives of F (k¢, z;; A) around k,0, and 0:

o O O o o o

We substitute the coefficients that we already know.

A linear system of 12 equations on 12 unknowns (remember Young's theorem!).
Why linear?

Cross-terms on kA and z\ are zero.

e More general result: all the terms in odd derivatives of \ are zero.

20



Correction for risk

e We have the term 1c, (k,0;0).

Captures precautionary behavior.

e We do not have certainty equivalence any more!

Important advantage of second order approximation.

Changes ergodic distribution of states.

21



Higher-order terms

e We can continue the iteration for as long as we want.

Great advantage of procedure: it is recursive!

Often, a few iterations will be enough.

The level of accuracy depends on the goal of the exercise:

1. Welfare analysis: Kim and Kim (2001).

2. Empirical strategies: Fernandez-Villaverde, Rubio-Ramirez, and Santos (2006).

22



A Numerical Example




A numerical example

‘Parameter B Q@ P o ‘
| Value 099 |0.33]0.95 | 0.01 |

Steady State:
c=0.388069 k =0.1883

First-order components:

¢k (k,0;0) = 0.680101 Ky (k,0;0) = 0.33
¢, (k,0;0) = 0.388069  , (k,0;0) = 0.1883

Second-order components:

cuk (k,0;0) = —2.41990 ki (k, 0;0) = —1.1742
ciz (k,0;0) = 0.680099 ki, (k,0;0) = 0.33
Czz (k,0;0) = 0 388064 k., (k,0;0) = 0 1883

( )= ( )=

Cy2 k,OO k)\Z k,OO

3\ (k,0,0) = k)\ (k,0,0) = Ck)\ (k,0,0) = kk)\ (k,0,0) = Cz) (k,O; 0) =
k.x (k,0;0) = 0. 23



Comparison

¢t = 0.6733e% k233
c: ~ 0.388069 + 0.680101 (k; — k) + 0.388069z,

_ 2-412990 (ke — k)2 + 0.680009 (ke — k) ¢ + 70'38506423
and:
kiy1 = 0.3267e% k233
key1 ~ 0.1883 + 0.33 (ke — k) + 0.1883z,
- 1'12742 (ke — k)* 4 0.33 (ke — k) z¢ + 0'12&23
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Capital Next Period

Capital Next Period

Comparison of exact and first-order solution
T T T T T T T

1 1 1 1 1 1 1 1
0.14 0.15 0.16 017 0.18 0. 0.21 0.22 0.23 0.24

.19 0.2
Capital Current Period

Comparison of exact and second-order solution
T T T T T T T

0.195 —

0.185 |-

0.175 (—

017 I I I I I I I I
0.14 0.15 0.16 0.17 0.18 0.19 021 0.22

1 0.2
Capital Current Period




e In practice you do all this approximations with a computer:

1. First-, second-, and third- order: Dynare.

2. Higher order: Mathematica, Dynare++.
e Burden: analytical derivatives.
e Why are numerical derivatives a bad idea?

e Alternatives: automatic differentiation?
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Local properties of the solution |

e Perturbation is a local method.

e |t approximates the solution around the deterministic steady state of the
problem.

e |t is valid within a radius of convergence.

27



Local properties of the solution Il

e What is the radius of convergence of a power series around x? An r € RS such
that Vx/, |x’ — z| < r, the power series of x" will converge.

A Remarkable Result from Complex Analysis

The radius of convergence is always equal to the distance from the center to the
nearest point where the decision rule has a (non-removable) singularity. If no such
point exists then the radius of convergence is infinite.

e Singularity here refers to poles, fractional powers, and other branch powers or
discontinuities of the functional or its derivatives.

28



Local properties of the solution IlI

e Holomorphic functions are analytic:

1. A function is holomorphic at a point x if it is differentiable at every point within
some open disk centered at x.

2. A function is analytic at x if in some open disk centered at x it can be expanded
as a convergent power series:

f(z):Z@n(z—x)"

e Distance is in the complex plane.

e Often, we can check numerically that perturbations have good non-local
behavior.

e However: problem with boundaries.

29



Non-local accuracy test

e Proposed by Judd (1992) and Judd and Guu (1997).

e Given the Euler equation:

]_ - E ((,YeztJrl ki(kt, Zt)()‘_l)
c' (ke , zt) ' ' (K'(ke, zt), ze+1)

we can define:

2 i Z[+1kl‘ k a—1
EEl(kt7Zf)]‘C’(kt7zt)]Et<ae (ke, zt) >

Ci (ki(kf7zt)7 Zt+1)

e Units of reporting.

e Interpretation.
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Log10|Euler Equation Error|

Value Function lteration

nan |,|l|| I

Finite Elements

Chebyshev Polynomials
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