
Data Handling

(Lectures on High-performance Computing for Economists IX)

Jesús Fernández-Villaverde,1 Pablo Guerrón,2 and David Zarruk Valencia3

December 3, 2018

1University of Pennsylvania

2Boston College

3ITAM

Handling data I

• In modern economics, we often deal with large and complex sets of data (big

data).

• Some data are “conventional” (national accounting, micro panels, industry

surveys, census data, international trade flows, ...).

• Some data come in “non-conventional” forms (plain text, library records, parish

and probate records, GIS data, electricity consumption, satellite imagery, web

scraping, network structure, social media, ...).

• Some data are old, but now easily available. Check the amazing dataset at

https://www.ucl.ac.uk/lbs/.

• This trend will increase over time as more archives get digitalized.

• These large datasets create their own challenges in terms of data wrangling,

storage, management, visualization, and processing.
1

https://www.ucl.ac.uk/lbs/

Library data

Data

2

Parish and probate data

3

Satellite imagery

4

Cell phone usage

5

Handling data II

• This will become more salient over time: watch the lectures at

http://www.equality-of-opportunity.org/bigdatacourse/.

• Why?

1. Explosion of data sources.

2. Computational power.

3. Advances in algorithms: machine learning and modern data structures/databases

(influence of Google).

• This topic will require a whole course on its own, so I will only introduce

fundamental ideas.

• Also, this lecture should motivate you to further understand the data structures

of your favorite programming language (e.g., in R, the dataframe; in Python,

the pandas).

6

http://www.equality-of-opportunity.org/bigdatacourse/

References

• Some basic references:

1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, by

Hadley Wickham and Garrett Grolemund.

2. Principles of Data Wrangling: Practical Techniques for Data Preparation, by Tye

Rattenbury et al.

3. Data Wrangling with R, by Bradley C. Boehmke.

4. Database Systems: Design, Implementation, Management (12th Edition), by

Carlos Coronel and Steven Morris.

5. Designing Data-Intensive Applications, by Martin Kleppmann.

6. Big Data: Principles and Best practices of Scalable Realtime Data Systems, by

Nathan Marz and James Warren.

7

Data vs. metadata I

• A good way to start thinking about how to handle data efficiently is to

distinguish between the data and its metadata.

• Data: ultimate information of interest.

• Metadata: data about the data.

• Tye Rattenbury et al. subdivide metadata in five aspects:

1. Structure: format and encoding of its records and fields.

2. Granularity: kinds of entities that each data record contains information about.

3. Accuracy: quality of the data.

4. Temporality: temporal structure of the representation of the data.

5. Scope: number of distinct attributes represented and the population coverage.

8

Data vs. metadata II

• For simple projects, the metadata will be trivial and you do not need to spend

much time thinking about it.

• But for complex, large projects, spending some time “getting” the metadata

right will be crucial:

1. Assess how much effort you want to spend in wrangling the data (e.g., manual

vs. automatization).

2. Assess how much effort you want to spend auditing the data.

3. Assess how much effort you want to spend in storing the data efficiently.

4. Assess how early decisions regarding the metadata might limit your future

analysis.

9

Alternative data file formats: plain text files

The Quartz guide to bad data

I once acquired the complete dog licensing database for Cook County, Illinois.

Instead of requiring the person registering their dog to choose a breed from a list,

the creators of the system had simply given them a text field to type into. As a

result this database contained at least 250 spellings of Chihuahua.

• Issues:

1. Inconsistent spelling and/or historical changes.

2. N/A, blank, or null values.

3. 0 values (or −1 or dates 1900, 1904, 1969, or 1970).

4. Text is garbled.

5. Lines ends are garbled.

6. Text comes from optical-character recognition (OCR).

10

Regular expressions I

11

Regular expressions II

• You need to learn a programming language that manipulates regular expressions

efficiently.

• Tye Rattenbury et al. claim that between 50% and 80% of real-life data

analysis is spent with data wrangling.

• About regular expressions in general:

1. Tutorial: https://www.regular-expressions.info/reference.html.

2. Online trial: https://regexr.com/.

• Modern programming languages have powerful regular expressions capabilities.

• In Python: https:

//www.tutorialspoint.com/python/python_reg_expressions.htm.

12

https://www.regular-expressions.info/reference.html
https://regexr.com/
https://www.tutorialspoint.com/python/python_reg_expressions.htm
https://www.tutorialspoint.com/python/python_reg_expressions.htm

Regular expressions and R

• In R: https://www.rstudio.com/wp-content/uploads/2016/09/

RegExCheatsheet.pdf.

• Two key packages: dplyr and tidyr part of tidyverse:

install.packages("tidyverse")

• In particular, learn to use the piping command from dplyr to make code more

readable:

x %>% f(y)

f(x, y)

• A real example we will discuss below

mySelection %>%

filter(weight < 5) %>%

select(species_id, sex, weight)

• Look also at https://www.tidytextmining.com/ for text mining.

13

https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://www.tidytextmining.com/

A graph we already saw

14

Alternative data file formats: JSON I

• JSON: JavaScript Object Notation, https://www.json.org/:

• Hierarchical data format:

1. A collection of key-value pairs.

2. An ordered list (array) of values. The values can be themselves either data or

another nested structure.

• Very efficient for the storage, transmitting, and parsing of data.

• It has gained much popularity with respect to XML.

• Important for modern databases (more on this later).

• At the core of Jupyter.

• UBSON: Universal Binary JSON.

15

https://www.json.org/

Alternative data file formats: JSON II

Example of JSON data, myObj:

{

"name":"Adam Smith",

"age":30,

"universities":["Princeton", "Penn", "Minnesota"]

}

Accessing the data:

x = myObj.universities[0];

16

JSON and R

In Rm we can install the rjson package.

install.packages("rjson")

library (rjson)

And use its capabilities to read a JSON object:

mydata <- fromJSON (myObj)

mydata_df <- data.frame (NULL)

for(i in seq_along (mydata$universities)) {

df <- data.frame (mydata$universities)
layoff_df <- rbind (layoff_df, df)

}

17

More alternative data file formats

• HTML and XML.

• Plenty of alternative proprietary data formats:

1. Microsoft office.

2. Stata files.

3. pdf files.

4. ...

• Usually a bad idea to rely on them...

• ...but sometimes they are the only alternative. Resort to tool such as Tabula

(https://tabula.technology) and WebPlotDigitizer.

18

https://tabula.technology
WebPlotDigitizer

Spreadsheets

• For datasets of moderate size, spreadsheets are a conventional choice.

• However, you should be careful while using them:

1. Do not employ their proprietary data formats (i.e., xlsx).

2. Do not perform any computation in the spreadsheet. They are not reproducible

and you are bound to make mistakes (or simply forget what you did).

• Best practices:

1. Comma-separated values (CSV) files are easier to share among co-authors,

computers, and across time.

2. Load the CSV file into Julia or R and run a script file on it. Store the script!

3. Use Jupyter, Hydrogen, or similar if you care about showing all the steps in

detail.

4. Use tidyverse in R to interact with Excel and other standard spreadsheets.

19

Databases

• A database is a self-described, organized collection of records (tuples), each of

them with multiple attributes.

• Components:

1. Data: the records and attributes of the database.

2. Metadata: the organization of the databased stored in a data dictionary.

• A spreadsheet is, then, just a very simple database.

• Similarly, a flat file (i.e., a simple CSV file) is a trivial database.

• A blockchain is a distributed database updated by consensus through a

proof-of-work ticket.

20

Why databases? I

• Complex data structures require a more sophisticated database (either single or

multi-user) with a database management system (DBMS) that stores,

manages, and facilitates access to records.

• For instance, your data cannot fit into a simple table without excessive

redundancies or without loss of efficiency in its processing.

• Examples in economics: CEX data, individual firm data,

• Other times, the data is too large to be stored in RAM and you just want to

select and manipulate some observations in an efficient way.

21

A bad design

22

A good design

 23

Why databases? II

• Often, you can build your own database in your code using object-orientation

and user-defined types.

• However, sometimes you need:

1. Refined capabilities of selection/joins.

2. Scalability.

3. Ensure safe concurrent operations on data.

4. Avoid data anomalies.

5. Prevent data loss from hardware/software crashes.

6. Interact with an already built database (e.g., at a statistical agency).

7. Build your own database.

8. Parallel computation and optimized data structures.

24

Database engines

• Plenty of industry-strength, scalable DBMS.

• At the core of each DBMS, you have a database engine that creates, reads,

updates, and deletes (CRUD) data.

• You can always access the engine directly with an API (for instance, to use

within your code in C++ or R). This is likely the most common case for

researchers.

• In addition, there is usually a GUI to interact with the DBMS (most famous:

Microsoft Access).

• A good source of information on popularity of database engines:

https://db-engines.com/en/.

25

https://db-engines.com/en/

Popularity of databases

26

Popularity by category

27

Open source vs. commercial databases

28

Databases vs. IBM RAMAC, 1956

29

Database management systems I

• As mentioned before, a DBMS plays three roles:

1. Data storage: special attention to system and disk failures and to data structures

that deliver good performance.

Interesting application of dynamic programming: Selinger et al. (1979),

https://people.eecs.berkeley.edu/~brewer/cs262/3-selinger79.pdf.

2. Data management: how data is logically organized, who has access to it (read,

write), and consistency conditions.

3. Data access: how access is accessed (queries) and what types of computations

are allowed in them.

• In real-life applications, these three task can involved high levels of complexity.

• In particular: multiple people have access to them and they involve multiple

units of hardware and software (think about an airline reservation system).
30

https://people.eecs.berkeley.edu/~brewer/cs262/3-selinger79.pdf

Database management systems II

Modern DBMS hide how data is stored from end user applications:

1. Thus, systems can evolve over time (i.e., hardware and software implementation

of data structures and optimized storage) without affecting you.

2. Similarly, you can change the database (e.g., add a new table) without having

to modify code that queries the database and manipulates the results of the

query.

3. The DBMS can handle abstract applications instead of being specifically tied to

one design of a concrete application.

4. Most DBMS are declarative, not imperative (tell the software what you want,

not how to get it):

4.1 Easier to use for non-programmers (many users will not be)...

4.2 ...but harder to optimize.
31

Optimized data structures

32

B trees

33

B+ trees

34

The CAP theorem

• Conjectured by Eric Brewer (2001), but proven by Seth Gilbert and Nancy

Lynch (2002).

• In a distributed database, you can only choose two of:

1. Consistency.

2. Availability.

3. Partition tolerance.

• If you think about it, the real trade-off is between consistency and availability

since the problem comes from the existence of a partition tolerance.

• Extension: PACELC theorem (Daniel J. Abadi, 2012): even in the absence of

partitions, one has to choose between latency (L) and consistency (C).

35

Relational database management systems

• Relational database management system (RDBMS) manage data stored in

relations (i.e., a table).

• Each relation has a schema (description of attributes, their types, and

constraints). An instance is data satisfying the schema.

• Each record (tuple) is a row of the relation and each attribute is a column.

• Each attribute has a domain consisting of a finite set of possible values within a

few primitive types.

• Each attribute might have constraints (important for safety).

• The schema of the database is the set of relation schemas.

• The relations, not just the individual observations, are of interest.

36

Relational model

This diagram is a little overwhelming, but it’s simple compared to
some you’ll see in the wild! The key to understanding diagrams like
this is to remember each relation always concerns a pair of tables.
You don’t need to understand the whole thing; you just need to
understand the chain of relations between the tables that you are
interested in.

For nycflights13:

• flights connects to planes via a single variable, tailnum.
• flights connects to airlines through the carrier variable.
• flights connects to airports in two ways: via the origin and
dest variables.

• flights connects to weather via origin (the location), and
year, month, day, and hour (the time).

Exercises
1. Imagine you wanted to draw (approximately) the route each

plane flies from its origin to its destination. What variables
would you need? What tables would you need to combine?

2. I forgot to draw the relationship between weather and air
ports. What is the relationship and how should it appear in the
diagram?

174 | Chapter 10: Relational Data with dplyr

37

Importance of constraints

38

Relational model, algebra, and calculus

Built around two elements:

1. Relational model:

1.1 Proposed by Edgar F. Codd (1969, Turing Award 1981).

1.2 Data is organized as tuples grouped into relations and independent of physical

properties of storage.

1.3 Consistent with first-order predicate logic.

2. Relational algebra and calculus:

2.1 Proposed, again, by Edgar F. Codd (1972).

2.2 A collection of operations (mutating joins, filtering joins, and set operations).

2.3 A way defining logical outcomes for data transformations.

39

Edgar F. Codd (1923-2003)

40

Example of data

The result of joining airlines to flights2 is an additional variable:
name. This is why I call this type of join a mutating join. In this case,
you could have got to the same place using mutate() and R’s base
subsetting:

flights2 %>%
 select(-origin, -dest) %>%
 mutate(name = airlines$name[match(carrier, airlines$carrier)])
#> # A tibble: 336,776 × 7
#> year month day hour tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr>
#> 1 2013 1 1 5 N14228 UA
#> 2 2013 1 1 5 N24211 UA
#> 3 2013 1 1 5 N619AA AA
#> 4 2013 1 1 5 N804JB B6
#> 5 2013 1 1 6 N668DN DL
#> 6 2013 1 1 5 N39463 UA
#> # ... with 3.368e+05 more rows, and 1 more variable:
#> # name <chr>

But this is hard to generalize when you need to match multiple vari‐
ables, and takes close reading to figure out the overall intent.

The following sections explain, in detail, how mutating joins work.
You’ll start by learning a useful visual representation of joins. We’ll
then use that to explain the four mutating join functions: the inner
join, and the three outer joins. When working with real data, keys
don’t always uniquely identify observations, so next we’ll talk about
what happens when there isn’t a unique match. Finally, you’ll learn
how to tell dplyr which variables are the keys for a given join.

Understanding Joins
To help you learn how joins work, I’m going to use a visual repre‐
sentation:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)

Mutating Joins | 179

41

Inner join

y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)

The colored column represents the “key” variable: these are used to
match the rows between the tables. The gray column represents the
“value” column that is carried along for the ride. In these examples
I’ll show a single key variable and single value variable, but the idea
generalizes in a straightforward way to multiple keys and multiple
values.

A join is a way of connecting each row in x to zero, one, or more
rows in y. The following diagram shows each potential match as an
intersection of a pair of lines:

(If you look closely, you might notice that we’ve switched the order
of the key and value columns in x. This is to emphasize that joins
match based on the key; the value is just carried along for the ride.)

In an actual join, matches will be indicated with dots. The number
of dots = the number of matches = the number of rows in the out‐
put.

Inner Join
The simplest type of join is the inner join. An inner join matches
pairs of observations whenever their keys are equal:

180 | Chapter 10: Relational Data with dplyr

42

Outer joinsGraphically, that looks like:

The most commonly used join is the left join: you use this whenever
you look up additional data from another table, because it preserves
the original observations even when there isn’t a match. The left join
should be your default join: use it unless you have a strong reason to
prefer one of the others.

Another way to depict the different types of joins is with a Venn dia‐
gram:

However, this is not a great representation. It might jog your mem‐
ory about which join preserves the observations in which table, but
it suffers from a major limitation: a Venn diagram can’t show what
happens when keys don’t uniquely identify an observation.

182 | Chapter 10: Relational Data with dplyr

43

Semijoin

Only the existence of a match is important; it doesn’t matter which
observation is matched. This means that filtering joins never dupli‐
cate rows like mutating joins do:

The inverse of a semi-join is an anti-join. An anti-join keeps the
rows that don’t have a match:

Anti-joins are useful for diagnosing join mismatches. For example,
when connecting flights and planes, you might be interested to
know that there are many flights that don’t have a match in
planes:

flights %>%
 anti_join(planes, by = "tailnum") %>%
 count(tailnum, sort = TRUE)
#> # A tibble: 722 × 2
#> tailnum n
#> <chr> <int>
#> 1 <NA> 2512
#> 2 N725MQ 575
#> 3 N722MQ 513
#> 4 N723MQ 507
#> 5 N713MQ 483

190 | Chapter 10: Relational Data with dplyr

44

Most popular relational database management systems

45

SQL I

• SQL (Structured English Query Language) is a domain-specific language for

defining, managing, and manipulating, data in relational databases.

• Developed at IBM in the early 1970s. Popularized by Oracle in the late 1970s.

• Based on Codd’s twelve rules (actually, 13, from 0 to 12) of a RDBMS:

https://computing.derby.ac.uk/c/codds-twelve-rules/.

• Current standard: SQL:2016. Check https://modern-sql.com/.

• Many different implementations (both open source and commercial) with some

differences in syntax and adherence to current standard.

46

https://computing.derby.ac.uk/c/codds-twelve-rules/
https://modern-sql.com/

SQL II

• Good implementations follow the ACID (Atomicity, Consistency, Isolation,

Durability) standard:

1. Atomicity: either all operations in the database succeed or none do.

2. Consistency: a transaction in the database cannot leave the database in an

inconsistent state.

3. Isolation: one transaction in the database cannot interfere with another.

4. Durability: a completed transaction persists, even after applications restart.

• Thus, you can understand SQL as choosing consistency over availability in the

CAP theorem (although “consistency” in ACID and the CAP theorem are

slightly different concepts). Most likely, the right choice in research.

47

SQL III

• Morover SQL has more procedural instructions than originally.

• In fact, SQL, after the introduction of Persistent Stored Modules (PSMs), is

Turing complete.

• Also, over time, SQL has incorporated many objected-oriented features ⇒
object-relational database management system (ORDBMS).

• Distributed computation: Apache Drill at https://drill.apache.org/

(also for many NoSQL databases).

• You can try basic SQL instructions at http://sqlfiddle.com/.

48

https://drill.apache.org/
http://sqlfiddle.com/

Open-source implementations I: PostgreSQL

• Current release: 10.5.

• Available at https://www.postgresql.org/.

• Evolved from the Interactive graphics and retrieval system (Ingres) project at

Berkeley, led by Michael Stonebraker (Turing Award 2014).

• Powerful ORDBMS implementation that can handle the most complex tasks.

• Available for all OS (for instance, it is the default in macOS Server).

• Highly extensible: user-defined data types, custom functions, and allows for

programming in different languages (including the definition of DSLs).

• Many add-ons, such as the PostGIS geospatial database extender.

• Multiversion concurrency control (less important for economists unless you have

many coauthors and RAs).
49

https://www.postgresql.org/

Open-source implementations II: SQLite

• Available at https://sqlite.org/about.html, but pre-installed in macOS

and most Linux distributions.

• Current release: 3.25.2.

• Uses PostgreSQL as a reference platform, but SQLite is serverless.

• Extremely popular, as it does not require a client-server engine (it is contained

in a C programming library) and its installation is rather compact and with

“zero configuration.” Attractive features for economics.

• Bindings for all popular programming languages.

• Faster than regular file I/O in your operating system with a carefully designed

application file format: a complete SQLite database is stored in a single

cross-platform disk file.

50

https://sqlite.org/about.html

Some SQLite instructions: basic interaction I

Getting Started with SQL: A Hands-On Approach for Beginners, by Thomas Nield.

To lunch command-line shell

sqlite3

You can also add commands after sqlite3 as in any other Unix/Linux program.

To exit:

sqlite> .exit

Alternative GUI ⇒ SQLite Studio: https://sqlitestudio.pl/

51

https://sqlitestudio.pl/

Some SQLite instructions: basic interaction II

Help:

sqlite> .help

To read commands from script files:

sqlite> .read myfile

To print a string:

sqlite> .print STRING

To load a file:

sqlite> .output FILENAME

Finally, to comment:

sqlite> -- This is a comment

52

Some SQLite instructions: basic interaction III

To check existing databases and associated files:

sqlite> .databases

To create a database

sqlite3 Economists.db

To check existing tables:

sqlite> .tables

To check schema of tables:

sqlite> .schema

In practice, you automatize the task we will describe below with script files and

mixing-in your favorite programming language.

53

Some SQLite instructions: DDL - Data Definition Language I

To create a table:

sqlite> CREATE TABLE Faculty (

Name TEXT, NOT NULL,

Age INTEGER CHECK (Age=>0 and Age<100),

Field CHAR (20),

PhD CHAR (25),

PRIMARY KEY(Name),

FOREIGN KEY(id));

Note:

1. Capital case, optional (SQLite is mainly case insensitive) but common.

2. Keys are also optional.

3. SQLite uses dynamic typing. Most SQL database engines use static, rigid

typing. I am following here standard typing convention in SQL and relying on

affinity rules. 54

Some SQLite instructions: DDL - Data Definition Language II

Beyond the standard types (text, integer, character, XML,...), we can define our own

types

sqlite> CREATE ROW TYPE personalAddress (

Street CHARACTER VARYING (25),

City CHARACTER VARYING(20),

State CHARACTER (2),

PostalCode CHARACTER VARYING (9));

To alter a table (note: some of the options of ALTER TABLE are not supported by

SQLite):

sqlite> ALTER TABLE Faculty ADD COLUMN Phone INTEGER;

sqlite> ALTER TABLE Faculty ADD COLUMN personalAddress addr_

type;

To drop a table:

sqlite> DROP TABLE Faculty; 55

Some SQLite instructions: DML - Data Manipulation Lan-

guage

To insert record:

sqlite> INSERT INTO Faculty (Name, Age, Field, PhD)

VALUES('Adam Smith', 35, 'Economics', 'Glasgow');
VALUES('David Ricardo', 42, 'Economics', 'London');

To modify record:

sqlite> UPDATE Faculty SET Name = 'David Ricardo' WHERE Name =

'Adam Smith';
sqlite> UPDATE Faculty SET Age = Age+1;

To delete record:

sqlite> DELETE FROM Faculty WHERE Field = 'Economics';);

56

Some SQLite instructions: DQL - Data Query Language I

To list records:

sqlite> SELECT Name, Field FROM Faculty;

To select records:

sqlite> SELECT * FROM Faculty ORDER BY Age ASC;

sqlite> SELECT * FROM Faculty WHERE Age>50;

sqlite> SELECT * FROM Faculty WHERE Age>50 ORDER BY Age DESC;

sqlite> SELECT Name FROM Faculty WHERE Name ~ 'A.*'
sqlite> SELECT MIN(Age) FROM Faculty;

sqlite> SELECT MAX(Age) FROM Faculty WHERE Field = 'Economics';
sqlite> SELECT Field AVG(Age) FROM Faculty GROUP by Field;

sqlite> SELECT Field AVG(Age) FROM Faculty GROUP by Field

HAVING COUNT(*)>2;

sqlite> SELECT Field AVG(Age) AS avg_age, COUNT(*) as size FROM

Faculty GROUP WHERE Age>50 by Field HAVING COUNT(*)>2

ORDER BY Age DESC;
57

Some SQLite instructions: DQL - Data Query Language II

Putting it all together

SELECT dept, AVG(gpa) AS avg_gpa, COUNT(*) AS size
FROM students

WHERE gender = 'F'
GROUP BY dept

HAVING COUNT(*) > 2
ORDER BY avg_gpa DESC

What does this compute?

http://bit.ly/ds100-sp18-sql

GROUP BY

WHERE

FROM HAVING

SELECT

[DISTINCT]

58

Some SQLite instructions: DQL - Data Query Language III

To (inner) join records:

sqlite> SELECT Name Dues FROM Faculty INNER JOIN

AmericanEconomicAssociation on Faculty.Name =

AmericanEconomicAssociation.Name;

Similar instructions for cross and outer joins.

You can insert NULL

sqlite> INSERT INTO Faculty (Name, Age, Field, PhD)

VALUES('J.M. Keynes', NULL, 'Economics', 'Cambridge');
sqlite> SELECT * FROM Faculty WHERE Age IS NOT NULL;

59

60

Some SQLite instructions: DQL - Data Query Language IV

You can create your own views:

sqlite> CREATE VIEW Econ_Faculty_View AS

SELECT Name, Age

FROM Faculty

WHERE Field = 'Economics';

The select can be as sophisticated as you want or subselect from the view.

sqlite> SELECT * FROM Econ_Faculty_View;

You cannot, however, to DELETE, INSERT or UPDATE statements on a view.

To drop a view:

sqlite> DROP VIEW Econ_Faculty_View;

61

SQL and R I

• You can run SQL in R or R in the SQL server.

• The former approach is probably more common in research.

• Check:

1. https://db.rstudio.com/.

2. https:

//datacarpentry.org/R-ecology-lesson/05-r-and-databases.html.

• In addition, new versions of RStudio integrate interaction with SQL.

62

https://db.rstudio.com/
https://datacarpentry.org/R-ecology-lesson/05-r-and-databases.html
https://datacarpentry.org/R-ecology-lesson/05-r-and-databases.html

SQL and R II

• Package dplyr: provides a flexible grammar of data manipulation centered

around data frames. In particular, dplyr allows you to translate the dplyr

verbs into SQL queries and use the SQL Engine to run the data

transformations. You need to install dbplyr (a backend for databases) as well:

it translates R code into database-specific variants.

• Package RSQLite: embeds the SQLite database engine in R and provides an

interface compliant with the DBI package (a database interface definition for

communication between R and relational database management systems).

• Package odbc: provides a DBI-compliant interface to Open Database

Connectivity (ODBC) drivers, including SQL Server, Oracle, and MySQL

(and also PostgreSQL, SQLite).

• Package dbplot: allows to process the calculations of a plot inside a database.

63

SQL and R III

64

SQL and R IV

65

SQL and R V

66

SQLite in R I

Let us first clear everything:

rm(list=ls())

We install required R packages:

install.packages(c("dplyr", "dbplyr", "RSQLite"))

We load relevant packages

library(dplyr)

library(dbplyr)

library(RSQLite)

67

SQLite in R II

We download a standard SQLite database used to teach and install it in a new

directory:

dir.create("data_class_computation", showWarnings = FALSE)

download.file(url = "https://ndownloader.figshare.com/files/

2292171", destfile = "data_class_computation/portal_

mammals.sqlite", mode = "wb")

We connect R to SQLite:

mammals <- DBI::dbConnect(RSQLite::SQLite(), "data_class_

computation/portal_mammals.sqlite")

We inspect the database:

src_dbi(mammals)

68

SQLite in R III

We select some observations with SQL syntax:

mySelection <- tbl(mammals, sql("SELECT year, species_id, plot

_id FROM surveys"))

We look at the top 5 observations:

head(mySelection, n = 5)

But it is easier to select with with dplyr syntax:

mySelection <- tbl(mammals, "surveys")

We can look again at the top 5 observations:

head(mySelection, n = 5)

You can also load the query in a R Notebook.

69

SQLite in R IV

We pipe the selection:

mySelection %>%

filter(weight < 5) %>%

select(species_id, sex, weight)

We link across tables:

species <- tbl(mammals, "species")

left_join(mySelection, species) %>%

filter(taxa == "Rodent") %>%

group_by(taxa, year) %>%

tally %>%

collect()

dyplr allows to implement all four joins for dataframes with ease.

70

NoSQL I

• Databases not based on tabular relations.

• Originally, it meant No+SQL.

• Today most NoSQL databases include some SQL features, so most people call it

Not only SQL.

• Concept existed since the 1960s (such as hierarchical databases), but it became

popular in the early 2000s.

• Interesting example of move towards less abstraction.

• Why?

1. Usually better dealing with big and distributed data because of their capability to

scale and parallelize.

2. Schemaless data representations require less planning and allow for easier ex post

adjustments.

3. Faster to code. 71

So you remember NoSQL

72

NoSQL II

• Instead of ACID, NoSQL follows BASE:

1. Basic availability: each request gets a response (successful or not).

2. Soft state: the state of the database changes over time, even without any input

(for eventual consistency).

3. Eventual consistency: the database may be momentarily inconsistent, but will

eventually reach consistency.

• Some NoSQL such as Neo4j, though, still deliver ACID.

• NoSQL chooses availability over consistency over in the CAP theorem. Note

importance for web applications.

73

NoSQL III

• NoSQL databases systems include a wide set of alternative approaches:

1. Document stores: schema-free organization of data ⇒ MongoDB, Couchbase.

2. Key-value stores: pairs of keys and values ⇒ Redis, Memcached.

3. Wide column stores: store data in records with very large numbers of dynamic

columns ⇒ Cassandra, HBase.

4. Time series DBMS: optimized for handling time series data: each entry is

associated with a timestamp ⇒ InfluxDB, Graphite.

5. Graph DBMS: represent data in graph structures as nodes and edges. ⇒ Neo4j,

AllegroGraph.

6. XML ⇒ MarkLogic, BaseX.

7. Search engines ⇒ Elasticsearch, Splunk.

8. Multimodel ⇒ Amazon DynamoDB, Microsoft Azure Cosmos DB.

• Also, object databases (although they have not taken off). 74

NoSQL: popularity

75

NoSQL: trends

76

NoSQL in economics

• Uses in economics:

1. Graph databases, for their potential to allow us discover important relational

patterns.

2. Time Series DBMS, to deal with financial and other high-frequency data.

3. Data collections that might chance over time in structure.

• Additional references:

1. Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL

Movement (2nd Edition), by Luc Perkins with Eric Redmond and Jim Wilson.

2. Next Generation Databases: NoSQL, NewSQL, and Big Data, by Guy Harrison.

77

MongoDB

• MongoDB (from “humongous”), most popular NoSQL database.

• Current release: 4.0, https://www.mongodb.com/.

• Built around BSON, Binary JSON, a version of JSON.

• Dual structure:

1. Documents are stored in collections using the BSON format. A collection is a

group of related documents with shared indices.

2. MongoDB collections belong to a database.

• Used, for example, by CERN to collect data from the Large Hadron Collider.

• Versatile and easy to use (expressive language for queries).

78

https://www.mongodb.com/

Mongo data model

79

NoSQL and R

• Less polished support than for SQL.

• Package nodbi for general backend.

• For MongoDB, we have package mongolite:

install.package("mongolite")

library(mongolite)

m <- mongo("mtcars", url = "mongodb://readwrite:test@mongo.

opencpu.org:43942/jeroen_test")

alldata <- dmd$find('{}')
print(alldata)

test <- dmd$find(
query = '{"cut" : "Premium"}',
fields = '{"cut" : true, "clarity" : true}',
limit = 5)

print(test)
80

Spark

• Available at https://spark.apache.org/.

• Current version: 2.3.2.

• A fast and general-purpose cluster computing system.

• Modern alternative to Hadoop (although without a file management system).

• High-level APIs in Java, Scala, Python, and R.

• Interacts well with SQL and has a beautiful machine learning library, MLlib.

• Allows for real-time processing and querying.

• Learning Spark: Lightning-Fast Big Data Analysis by Holden Karau and Andy

Konwinski.

81

https://spark.apache.org/

Spark stack

Figure 1-1. The Spark stack

Spark Core
Spark Core contains the basic functionality of Spark, including components for task
scheduling, memory management, fault recovery, interacting with storage systems,
and more. Spark Core is also home to the API that defines resilient distributed data‐
sets (RDDs), which are Spark’s main programming abstraction. RDDs represent a
collection of items distributed across many compute nodes that can be manipulated
in parallel. Spark Core provides many APIs for building and manipulating these
collections.

Spark SQL
Spark SQL is Spark’s package for working with structured data. It allows querying
data via SQL as well as the Apache Hive variant of SQL—called the Hive Query Lan‐
guage (HQL)—and it supports many sources of data, including Hive tables, Parquet,
and JSON. Beyond providing a SQL interface to Spark, Spark SQL allows developers
to intermix SQL queries with the programmatic data manipulations supported by
RDDs in Python, Java, and Scala, all within a single application, thus combining SQL
with complex analytics. This tight integration with the rich computing environment
provided by Spark makes Spark SQL unlike any other open source data warehouse
tool. Spark SQL was added to Spark in version 1.0.

Shark was an older SQL-on-Spark project out of the University of California, Berke‐
ley, that modified Apache Hive to run on Spark. It has now been replaced by Spark
SQL to provide better integration with the Spark engine and language APIs.

Spark Streaming
Spark Streaming is a Spark component that enables processing of live streams of data.
Examples of data streams include logfiles generated by production web servers, or
queues of messages containing status updates posted by users of a web service. Spark

A Unified Stack | 3

82

RDDs

• Organized around resilient distributed datasets (RDDs).

• An RDD is a collection of items distributed across computer nodes that can be

manipulated in parallel.

• Operations: transformations (“map”, “filter”) and actions (“count”, “collect”).

• Why resilient? Automatically rebuilt on failure.

• It can be stored on disk or memory.

• Completely lazy evaluation.

83

Spark example code

def inside(p):

x, y = random.random(), random.random()

return x*x + y*y < 1

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

.filter(inside).count()

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

84

Spark and R

85

Spark in R I

Let us first clear everything:

rm(list=ls())

We install required Spark package:

install.packages("sparklyr")

We load relevant package and install Spark:

library(sparklyr)

spark_install(version = "2.3.0")

86

Spark in R II

We contect to Spark:

sc <- spark_connect(master = "local")

We install package with some cute data:

install.packages(c("nycflights13"))

We load relevant package and install Spark:

library(dplyr)

flights_tbl <- copy_to(sc, nycflights13::flights, "flights")

src_tbls(sc)

Some piping:

flights_tbl %>% filter(dep_delay == 2)

87

Machine learning

• Many of the most popular algorithms in machine learning are coded in reliable,

state-of-the-art libraries.

• Most famous:

1. Tensorflow, https://www.tensorflow.org/.

2. scikit-learn, http://scikit-learn.org/stable/.

• Note, however, that if you are going to write frontier papers in machine

learning, chances are you will need to write much (most?) of your own code.

88

https://www.tensorflow.org/
http://scikit-learn.org/stable/

GIS

• Geographic information systems (GIS) capture, store, manipulate, and display

geographic information data.

• Goes back to John Snow’s 1855 map of the Soho cholera outbreak.

• Why current boom? Spatial econometrics and quantitative spatial economics:

1. A Primer for Spatial Econometrics: With Applications in R, by Giuseppe Arbia.

2. Redding and Rossi-Hansberg (2017).

• Resources:

1. https://www.gislounge.com/.

2. https://gisgeography.com/

89

https://www.gislounge.com/
https://gisgeography.com/

John Snow, cholera epidemics 1858

90

The effects of the Mita I
1864 MELISSA DELL

FIGURE 1.—The mita boundary is in black and the study boundary in light gray. Districts falling
inside the contiguous area formed by the mita boundary contributed to the mita. Elevation is
shown in the background.

This discrete change suggests a regression discontinuity (RD) approach for
evaluating the long-term effects of the mita, with the mita boundary forming
a multidimensional discontinuity in longitude–latitude space. Because valid-
ity of the RD design requires all relevant factors besides treatment to vary
smoothly at the mita boundary, I focus exclusively on the portion that transects
the Andean range in southern Peru. Much of the boundary tightly follows the
steep Andean precipice, and hence has elevation and the ethnic distribution of
the population changing discretely at the boundary. In contrast, elevation, the
ethnic distribution, and other observables are statistically identical across the
segment of the boundary on which this study focuses. Moreover, specification
checks using detailed census data on local tribute (tax) rates, the allocation of
tribute revenue, and demography—collected just prior to the mita’s institution
in 1573—do not find differences across this segment. The multidimensional
nature of the discontinuity raises interesting and important questions about
how to specify the RD polynomial, which will be explored in detail.

Using the RD approach and household survey data, I estimate that a long-
run mita effect lowers equivalent household consumption by around 25% in

91

The effects of the Mita II
1880 MELISSA DELL

FIGURE 2.—Plots of various outcomes against longitude and latitude. See the text for a de-
tailed description.

The results can be seen graphically in Figure 2. Each subfigure shows a
district-level scatter plot for one of the paper’s main outcome variables. These
plots are the three-dimensional analogues to standard two-dimensional RD
plots, with each district capital’s longitude on the x axis, its latitude on the y
axis, and the data value for that district shown using an evenly spaced mono-
chromatic color scale, as described in the legends. When the underlying data
are at the microlevel, I take district-level averages, and the size of the dot in-
dicates the number of observations in each district. Importantly, the scaling
on these dots, which is specified in the legend, is nonlinear, as otherwise some
would be microscopic and others too large to display. The background in each
plot shows predicted values, for a finely spaced grid of longitude–latitude co-

92

The effects of the Mita III
PERSISTENT EFFECTS OF MITA 1881

FIGURE 2.—Continued.

ordinates, from a regression of the outcome variable under consideration on a
cubic polynomial in longitude–latitude and the mita dummy. In the typical RD
context, the predicted value plot is a two-dimensional curve, whereas here it
is a three-dimensional surface, with the third dimension indicated by the color
gradient.21 The shades of the data points can be compared to the shades of the
predicted values behind them to judge whether the RD has done an adequate
job of averaging the data across space. The majority of the population in the
region is clustered along the upper segment of the mita boundary, giving these

21Three-dimensional surface plots of the predicted values are shown in Figure A2 in the Sup-
plemental Material, and contour plots are available upon request.

93

The effects of the Mita IV

1878
M

E
L

ISSA
D

E
L

L

TABLE II

LIVING STANDARDSa

Dependent Variable

Log Equiv. Hausehold Consumption (2001) Stunted Growth, Children 6–9 (2005)

Sample Within: <100 km <75 km <50 km <100 km <75 km <50 km Border
of Bound. of Bound. of Bound. of Bound. of Bound. of Bound. District

(1) (2) (3) (4) (5) (6) (7)

Panel A. Cubic Polynomial in Latitude and Longitude
Mita −0�284 −0�216 −0�331 0�070 0�084* 0�087* 0�114**

(0�198) (0�207) (0�219) (0�043) (0�046) (0�048) (0�049)

R2 0�060 0�060 0�069 0�051 0�020 0�017 0�050

Panel B. Cubic Polynomial in Distance to Potosí
Mita −0�337*** −0�307*** −0�329*** 0�080*** 0�078*** 0�078*** 0�063*

(0�087) (0�101) (0�096) (0�021) (0�022) (0�024) (0�032)

R2 0�046 0�036 0�047 0�049 0�017 0�013 0�047

Panel C. Cubic Polynomial in Distance to Mita Boundary
Mita −0�277*** −0�230** −0�224** 0�073*** 0�061*** 0�064*** 0�055*

(0�078) (0�089) (0�092) (0�023) (0�022) (0�023) (0�030)

R2 0�044 0�042 0�040 0�040 0�015 0�013 0�043

Geo. controls yes yes yes yes yes yes yes
Boundary F.E.s yes yes yes yes yes yes yes
Clusters 71 60 52 289 239 185 63
Observations 1478 1161 1013 158,848 115,761 100,446 37,421

aThe unit of observation is the household in columns 1–3 and the individual in columns 4–7. Robust standard errors, adjusted for clustering by district, are in parentheses. The dependent variable is log
equivalent household consumption (ENAHO (2001)) in columns 1–3, and a dummy equal to 1 if the child has stunted growth and equal to 0 otherwise in columns 4–7 (Ministro de Educación (2005a)). Mita is
an indicator equal to 1 if the household’s district contributed to the mita and equal to 0 otherwise (Saignes (1984), Amat y Juniet (1947, pp. 249, 284)). Panel A includes a cubic polynomial in the latitude and
longitude of the observation’s district capital, panel B includes a cubic polynomial in Euclidean distance from the observation’s district capital to Potosí, and panel C includes a cubic polynomial in Euclidean
distance to the nearest point on the mita boundary. All regressions include controls for elevation and slope, as well as boundary segment fixed effects (F.E.s). Columns 1–3 include demographic controls for
the number of infants, children, and adults in the household. In columns 1 and 4, the sample includes observations whose district capitals are located within 100 km of the mita boundary, and this threshold is
reduced to 75 and 50 km in the succeeding columns. Column 7 includes only observations whose districts border the mita boundary. 78% of the observations are in mita districts in column 1, 71% in column
2, 68% in column 3, 78% in column 4, 71% in column 5, 68% in column 6, and 58% in column 7. Coefficients that are significantly different from zero are denoted by the following system: *10%, **5%, and
***1%. 94

QGIS

• QGIS, current version: 3.2.3.

• Check https://qgis.org/en/site/. Also, note large number of pluggins.

• Works with PostGIS, which adds support for geographic objects to the

PostgreSQL.

• Alternative: to work directly in Python or R.

• Check https://www.jessesadler.com/post/gis-with-r-intro/.

95

https://qgis.org/en/site/
https://www.jessesadler.com/post/gis-with-r-intro/

