
Coding Tools

(Lectures on High-performance Computing for Economists VI)

Jesús Fernández-Villaverde,1 Pablo Guerrón,2 and David Zarruk Valencia3

October 22, 2018

1University of Pennsylvania

2Boston College

3ITAM

Compilers

Compilers

• If you use a compiled language such as C/C++ or Fortran, you have another

choice: which compiler to use?

• Huge differences among compilers in:

1. Performance.

2. Compatibility with standards.

3. Implementation of new features:

http://en.cppreference.com/w/cpp/compiler_support.

4. Extra functionality (MPI, OpenMP, CUDA, OpenACC. ...).

• High return in learning how to use your compiler proficiently.

• Often you can mix compilers in one project.

1

http://en.cppreference.com/w/cpp/compiler_support

2

3

The GCC compiler collection

• A good default option: GNU GCC 8.2 compiler.

1. Open source.

2. C, C++, Objective-C, Java, Fortran, Ada, and Go.

3. Integrates well with other tools, such as JetBrains’ IDEs.

4. Updated (C++17).

5. Efficient.

6. An Introduction to GCC, by Brian Gough,

http://www.network-theory.co.uk/docs/gccintro/

4

http://www.network-theory.co.uk/docs/gccintro/

The LLVM compiler infrastructure

1. LLVM (http://llvm.org/), including Clang.

1.1 It comes with OS/X and Xcode.

1.2 Faster for compiling, uses less memory.

1.3 Run time is slightly worse than GCC.

1.4 Useful for extensions: Cling (https://github.com/root-project/cling).

1.5 Architecture of Julia.

2. DragonEgg: uses LLVM as a GCC backend.

5

http://llvm.org/
https://github.com/root-project/cling

Commercial compilers

1. Intel Parallel Studio XE (in particular with MKL) for C, C++, and

Fortran (plus a highly efficient Python distribution). Community edition

available.

2. PGI. Community edition available. Good for OpenACC.

3. Microsoft Visual Studio for C, C++, and other languages less relevant in

scientific computation. Community edition available.

4. C/C++: C++Builder.

5. Fortran: Absoft, Lahey, and NAG.

6

Libraries

Libraries I

• Why libraries?

• Well-tested, state-of-the-art algorithms.

• Save on time.

• Classic ones

1. BLAS (Basic Linear Algebra Subprograms).

2. Lapack (Linear Algebra Package).

7

Libraries II

• More modern implementations:

1. Accelerate Framework (OS/X).

2. ATLAS (Automatically Tuned Linear Algebra Software).

3. MKL (Math Kernel Library).

• Open source libraries:

1. GNU Scientific Library.

2. GNU Multiple Precision Arithmetic Library.

3. Armadillo.

4. Boost.

5. Eigen.

8

Build Automation

Build automation

• A build tool automatizes the linking and compilation of code.

• This includes latex and pdf codes!

• Why?

1. Avoid repetitive task.

2. Get all the complicated linking and compiling options right (and, if text, graphs,

options, etc.).

3. Avoid errors.

4. Reproducibility.

• GNU Make and CMake.

9

Why Make?

• Programed by Stuart Feldman, when he was a summer intern!

• Open source.

• Well documented.

• Close to Unix.

• Additional tools: etags, cscope, ctree.

10

11

Basic idea

• You build a make file: script file with:

1. Instructions to make a file.

2. Update dependencies.

3. Clean old files.

• Daily builds. Continuous integration proposes even more.

• Managing Projects with GNU Make (3rd Edition) by Robert Mecklenburg,

http://oreilly.com/catalog/make3/book/.

12

http://oreilly.com/catalog/make3/book/

Containers

• A container is stand-alone, executable package of some software.

• It should include everything needed to run it: code, system tools, system

libraries, settings, ...

• Why? Keep all your environment together and allow for multi-platform

development and team coding.

• Easier alternative to VMs. But dockers are not “lightweight VMs.”

• Most popular: Docker https://www.docker.com/.

• Built around dockerfiles and layers.

13

https://www.docker.com/

Linting

Linting

• Lint was a particular program that flagged suspicious and non-portable

constructs in C source code.

• Later, it became a generic word for any tool that discovers errors in a code

(syntax, typos, incorrect uses) before the code is compiled (or run)⇒static code

analyzer.

• It also enforces coding standards.

• Good practice: never submit anything to version control (or exit the text

editor) unless your linting tool is satisfied.

• Examples:

1. Good IDEs and GCC (and other compilers) have excellent linting tools.

2. C/C++: clang-tidy and ccpcheck.

3. Julia: Lint.jl.

4. R: lintr.

5. Matlab: checkcode in the editor. 14

Debugging

Debugging

C. Titus Brown

If you’re confident your code works, you’re probably wrong. And that should worry

you.

• Why bugs? Harvard Mark II, September 9, 1947.

• Find and eliminate mistakes in the code.

• In practice more time is spent debugging than in actual coding.

• Complicated by the interaction with optimization.

• Difference between a bug and a wrong algorithm.

15

16

Typical bugs

• Memory overruns.

• Type errors.

• Logic errors.

• Loop errors.

• Conditional errors.

• Conversion errors.

• Allocation/deallocation errors.

17

How to avoid them

• Techniques of good coding.

• Error handling.

• Strategies of debugging:

1. Tracing: line by line.

2. Stepping: breakpoints and stepping over/stepping out commands.

3. Variable watching.

18

Debuggers

• Manual inspection of the code. Particularly easy in interpreted languages and

short scripts.

• Use assert.

• More powerful: debuggers:

1. Built in your application: RStudio, Matlab or IDEs.

2. Explicit debugger:

2.1 GNU Debugger (GDB), installed in your Unix machine.

2.2 Python: pdb.

2.3 Julia: Gallium.jl.

19

20

Unit testing

• Idea.

• Tools:

1. xUnit framework (CppUnit, testthat in R,).

2. In Julia: Test module.

3. In Matlab: matlab.unittest framework.

• Regression testing.

21

Profiler

Profiler

• You want to identify the hot spots of performance.

• Often, they are in places you do not suspect and small re-writtings of the code

bring large performance improvements.

• Technique:

1. Sampling.

2. Instrumentation mode.

• We will come back to code optimization.

22

	Compilers
	Libraries
	Build Automation
	Linting
	Debugging
	Profiler

