gi UNIVERSITY 0f PENNSYLVANIA

Programming Languages: Concepts

(Lectures on High-performance Computing for Economists 1V)

Jesiis Fernandez-Villaverde,' Pablo Guerrén,? and David Zarruk Valencia®
October 22, 2018

LUniversity of Pennsylvania

2Boston College

3ITAM



Introduction



Since the invention of Fortran in 1954-1957 to substitute assembly language,

hundreds of programming languages have appeared.

Some more successful than others, some more useful than others.

Moreover, languages evolve over time (different version of Fortran).

Different languages are oriented toward certain goals and have different
approaches.



AUTOMATIC CODING SYSTEM

THE IBM 704




Some references

e Programming Language Pragmatics (4th Edition), by Michael L. Scott.

e Essentials of Programming Languages (3rd Edition), by Daniel P. Friedman and
Mitchell Wand.

Concepts of Programming Languages (11th Edition), by Robert W. Sebesta.

http://hyperpolyglot.org/


http://hyperpolyglot.org/

The basic questions

e Which programming language to learn?
e Which programming language to use in this project?

e Do | need to learn a new language?



Which programming language? |

e Likely to be a large investment.

e Also, you will probably want to be familiar at least with a couple of them (good
mental flexibility) plus IATEX.

Alan Perlis

A language that doesn't affect the way you think about programming is not worth
knowing.

e There is a good chance you will need to recycle yourself over your career.



Which programming language? |l

e Typical problems in economics can be:

1. CPU-intensive.

2. Memory-intensive.
e Imply different emphasis.

e Because of time constraints, we will not discuss memory-intensive tools such as
Hadoop and Spark.



Classification



Classification

e There is no “best” solution.
e But there are some good tips.
e We can classify programming languages according to different criteria.

e We will pick several criteria that are relevant for economists:

1. Level.

2. Domain.
3. Execution.
4. Type.

5. Paradigm



Level

o Levels:

1. machine code.

2. Low level: assembly language like NASM (http://www.nasm.us/), GAS, or HLA
(The Art of Assembly Language (2nd Edition), by Randall Hyde).

3. High level: like C/C++, Julia, ...

e You can actually mix different levels (C).
e Portability.

e You are unlikely to see low level programming unless you get into the absolute
frontier of performance (for instance, with extremely aggressive parallelization).



Fibonacci number

Machine code:

8B542408 83FA0077 06B80000 0000C383 FA027706 B8010000 00C353BB
01000000 B9010000 008D0419 83FA0376 078BD98B C84AEBF1 5BC3

Assembler:

ib: mov edx, [esp+8] «cmp edx, 0 ja @f mov eax, O ret @Q:
cmp edx, 2 ja @f mov eax, 1 ret @Q: push ebx mov ebx, 1
mov ecx, 1 @@: lea eax, [ebxtecx] cmp edx, 3 jbe @f mov ebx,

ecx mov ecx, eax dec edx jmp @b ©Q: pop ebx ret

C++:

int fibonacci(const int x) {
if (x==0) return(0);
if (x==1) return(l);
return (fibonacci(x-1))+fibonacci(x-2);}




10



e Domain:

1. General-purpose programming languages (GPL), such as Fortran, C/C++,
Python, ...

2. Domain specific language (DSL) such as Julia, R, Matlab, Mathematica, ...

e Advantages/disadvantages:
1. GPL are more powerful, usually faster to run.

2. DSL are easier to learn, faster to code, built-in functions and procedures.

11



Execution |

e Three basic modes to run code:

1. Interpreted: Python, R, Matlab, Mathematica.
2. Compiled: Fortran, C/C++.

3. JIT (Just-in-Time) compilation: Julia.

Interpreted languages can we used with:

1. A command line in a REPL (Read-eval—print loop).

2. A script file.

Many DSL are interpreted, but this is neither necessary nor sufficient.

Advantages/disadvantages: similar to GPL versus DSL.

Interpreted and JIT programs are easier to move across platforms.

12



Execution Il

e In reality, things are somewhat messier.

e Some languages are explicitly designed with an interpreter and a compiler
(Haksell, Scala, F#).

e Compiled programs can be extended with third-party interpreters (CINT and
Cling for C/C++).

e Often, interpreted programs can be compiled with an auxiliary tool (Matlab,

Mathematica,...).

e Interpreted programs can also be compiled into byte code (R, languages that
run on the JVM -by design or by a third party compiler).

e We can mix interpretation/compilation with libraries.

13



Types |

e Type strength:

1. Strong: type enforced.
2. Weak: type is tried to be adapted.

e Type expression:
1. Manifest: explicit type.
2. Inferred: implicit.
e Type checking:
1. Static: type checking is performed during compile-time.
2. Dynamic: type checking is performed during run-time.
e Type safety:

1. Safe: error message.

2. Unsafe: no error.

14



Types |l

e Advantages of strong/manifest/static/safe type:

1.

Easier to find programming mistakes=-ADA, for critical real-time applications, is
strongly typed.

Easier to read.
Easier to optimize for compilers.

Faster runtime not all values need to carry a dynamic type.

e Disadvantages:

1.
2.

3

Harder to code.
Harder to learn.

Harder to prototype.

15



Types Il

e You implement strong/manifest/static/safe typing in dynamically typed
languages.

e You can define variables explicitly. For example, in Julia:

a::Int = 10

It often improve performance speed and safety.

e You can introduce checks:

a = "This is a string"

if typeof(a) == String
println(a)

else

println("Error")

end

16



Sep 2018
1

2

Sep 2017
1

2

Change

«

«

«

Programming Language

Java

Visual Basic .NET
C#

PHP

JavaScript

saL

Objective-C
Delphi/Object Pascal
Ruby

MATLAB

Assembly language
Swift

Go

Perl

R

PL/SQL

Visual Basic

Ratings
17.436%
15.447%
7.653%
7.394%
5.308%
3.295%
2.775%
2.131%
2.062%
1.509%
1.292%
1.291%
1.276%
1.232%
1.223%
1.081%
1.073%
1.016%
0.850%

0.682%

Change
+4.75%
+8.06%
+4.67%
+1.83%
+3.33%
-1.48%
+0.57%
+0.11%
+2.06%
+0.00%
-0.49%
-0.64%
-0.35%
-0.41%
-0.54%
-0.49%
-0.88%
-0.80%
-0.63%

-1.07%

17



Programming Language

Java

Visual Basic .NET
JavaScript

PHP

Ruby

Delphi/Object Pascal
Perl

Objective-C

Ada

Fortran

Lisp

2018

29

30

31

2013

2008

2003

1998

1993

1988

18



Language popularity |

e C family (a subset of the ALGOL family), also known as “curly-brackets
languages”:

1. C, C++, C#: 26.14%: 3 out of top 6.

2. Java, C, C++, C#, JavaScript, PHP, Perl: 49.50%: 7 out of top 10.

Python: position 3, 7.65%.

Matlab: position 16, 1.28%.
e R: position 18, 1.02%.
e Fortran: position 29, 0.42%.

e Julia: position 39, 0.24%.

19



L age popularity Il

e High-performance and scientific computing is a small area within the
programming community.

e Thus, you need to read the previous numbers carefully.
e For example:

1. You will most likely never use JavaScript or PHP (at least while wearing with
your “economist” hat) or deal with an embedded system.

2. C# and Swift are cousins of C focused on industry applications not very relevant
for you.

3. Java (usually) pays a speed penalty.

4. Fortran is still used in some circles in high-performance programming, but most
programmers will never bump into anyone who uses Fortran.

20



Multiprogramming

e Attractive approach in many situations.
e Best IDEs can easily link files from different languages.
e Easier examples:

1. Cpp.jl and PyCall in Julia.
2. Rcpp.

3. Mex files in Matlab.

21



	Introduction
	Classification

