
Programming Languages: Concepts

(Lectures on High-performance Computing for Economists IV)

Jesús Fernández-Villaverde,1 Pablo Guerrón,2 and David Zarruk Valencia3

October 22, 2018

1University of Pennsylvania

2Boston College

3ITAM



Introduction



Motivation

• Since the invention of Fortran in 1954-1957 to substitute assembly language,

hundreds of programming languages have appeared.

• Some more successful than others, some more useful than others.

• Moreover, languages evolve over time (different version of Fortran).

• Different languages are oriented toward certain goals and have different

approaches.

1



2



Some references

• Programming Language Pragmatics (4th Edition), by Michael L. Scott.

• Essentials of Programming Languages (3rd Edition), by Daniel P. Friedman and

Mitchell Wand.

• Concepts of Programming Languages (11th Edition), by Robert W. Sebesta.

• http://hyperpolyglot.org/

3

http://hyperpolyglot.org/


The basic questions

• Which programming language to learn?

• Which programming language to use in this project?

• Do I need to learn a new language?

4



Which programming language? I

• Likely to be a large investment.

• Also, you will probably want to be familiar at least with a couple of them (good

mental flexibility) plus LATEX.

Alan Perlis

A language that doesn’t affect the way you think about programming is not worth

knowing.

• There is a good chance you will need to recycle yourself over your career.

5



Which programming language? II

• Typical problems in economics can be:

1. CPU-intensive.

2. Memory-intensive.

• Imply different emphasis.

• Because of time constraints, we will not discuss memory-intensive tools such as

Hadoop and Spark.

6



Classification



Classification

• There is no “best” solution.

• But there are some good tips.

• We can classify programming languages according to different criteria.

• We will pick several criteria that are relevant for economists:

1. Level.

2. Domain.

3. Execution.

4. Type.

5. Paradigm

7



Level

• Levels:

1. machine code.

2. Low level: assembly language like NASM (http://www.nasm.us/), GAS, or HLA

(The Art of Assembly Language (2nd Edition), by Randall Hyde).

3. High level: like C/C++, Julia, ...

• You can actually mix different levels (C).

• Portability.

• You are unlikely to see low level programming unless you get into the absolute

frontier of performance (for instance, with extremely aggressive parallelization).

8



Fibonacci number

Machine code:

8B542408 83FA0077 06B80000 0000C383 FA027706 B8010000 00C353BB

01000000 B9010000 008D0419 83FA0376 078BD98B C84AEBF1 5BC3

Assembler:

ib: mov edx, [esp+8] cmp edx, 0 ja @f mov eax, 0 ret @@:

cmp edx, 2 ja @f mov eax, 1 ret @@: push ebx mov ebx, 1

mov ecx, 1 @@: lea eax, [ebx+ecx] cmp edx, 3 jbe @f mov ebx,

ecx mov ecx, eax dec edx jmp @b @@: pop ebx ret

C++:

int fibonacci(const int x) {

if (x==0) return(0);

if (x==1) return(1);

return (fibonacci(x-1))+fibonacci(x-2);}

9



10



Domain

• Domain:

1. General-purpose programming languages (GPL), such as Fortran, C/C++,

Python, ...

2. Domain specific language (DSL) such as Julia, R, Matlab, Mathematica, ...

• Advantages/disadvantages:

1. GPL are more powerful, usually faster to run.

2. DSL are easier to learn, faster to code, built-in functions and procedures.

11



Execution I

• Three basic modes to run code:

1. Interpreted: Python, R, Matlab, Mathematica.

2. Compiled: Fortran, C/C++.

3. JIT (Just-in-Time) compilation: Julia.

• Interpreted languages can we used with:

1. A command line in a REPL (Read–eval–print loop).

2. A script file.

• Many DSL are interpreted, but this is neither necessary nor sufficient.

• Advantages/disadvantages: similar to GPL versus DSL.

• Interpreted and JIT programs are easier to move across platforms.

12



Execution II

• In reality, things are somewhat messier.

• Some languages are explicitly designed with an interpreter and a compiler

(Haksell, Scala, F#).

• Compiled programs can be extended with third-party interpreters (CINT and

Cling for C/C++).

• Often, interpreted programs can be compiled with an auxiliary tool (Matlab,

Mathematica,...).

• Interpreted programs can also be compiled into byte code (R, languages that

run on the JVM -by design or by a third party compiler).

• We can mix interpretation/compilation with libraries.

13



Types I

• Type strength:

1. Strong: type enforced.

2. Weak: type is tried to be adapted.

• Type expression:

1. Manifest: explicit type.

2. Inferred: implicit.

• Type checking:

1. Static: type checking is performed during compile-time.

2. Dynamic: type checking is performed during run-time.

• Type safety:

1. Safe: error message.

2. Unsafe: no error.

14



Types II

• Advantages of strong/manifest/static/safe type:

1. Easier to find programming mistakes⇒ADA, for critical real-time applications, is

strongly typed.

2. Easier to read.

3. Easier to optimize for compilers.

4. Faster runtime not all values need to carry a dynamic type.

• Disadvantages:

1. Harder to code.

2. Harder to learn.

3. Harder to prototype.

15



Types III

• You implement strong/manifest/static/safe typing in dynamically typed

languages.

• You can define variables explicitly. For example, in Julia:

a::Int = 10

• It often improve performance speed and safety.

• You can introduce checks:

a = "This is a string"

if typeof(a) == String

println(a)

else

println("Error")

end

16



17



18



Language popularity I

• C family (a subset of the ALGOL family), also known as “curly-brackets

languages”:

1. C, C++, C#: 26.14%: 3 out of top 6.

2. Java, C, C++, C#, JavaScript, PHP, Perl: 49.50%: 7 out of top 10.

• Python: position 3, 7.65%.

• Matlab: position 16, 1.28%.

• R: position 18, 1.02%.

• Fortran: position 29, 0.42%.

• Julia: position 39, 0.24%.

19



Language popularity II

• High-performance and scientific computing is a small area within the

programming community.

• Thus, you need to read the previous numbers carefully.

• For example:

1. You will most likely never use JavaScript or PHP (at least while wearing with

your “economist” hat) or deal with an embedded system.

2. C# and Swift are cousins of C focused on industry applications not very relevant

for you.

3. Java (usually) pays a speed penalty.

4. Fortran is still used in some circles in high-performance programming, but most

programmers will never bump into anyone who uses Fortran.

20



Multiprogramming

• Attractive approach in many situations.

• Best IDEs can easily link files from different languages.

• Easier examples:

1. Cpp.jl and PyCall in Julia.

2. Rcpp.

3. Mex files in Matlab.

21


	Introduction
	Classification

