
Why High-performance Computing?

(Lectures on High-performance Computing for Economists I)

Jesús Fernández-Villaverde,1 Pablo Guerrón,2 and David Zarruk Valencia3

October 22, 2018

1University of Pennsylvania

2Boston College

3ITAM



Computation in economics I

• Computing has become a central tool in economics:

1. Macro → solution and estimation of dynamic equilibrium models, policy

evaluation and forecast, ...

2. Micro → computation of games, labor/life-cycle models, models of industry

dynamics, study of networks, bounded rationality and agent-based models, ...

3. Econometrics → non-standard estimators, simulation-based estimators, large

datasets, ...

4. International/spatial economics → models with heterogeneous firms and

countries, dynamic models of international trade, spatial models, economic

consequences of climate change and environmental policies, ...

5. Finance → asset pricing, non-arbitrage conditions, VaR, ...

6. Economic history → processing of large sets of non-standard information, library

data, historical counterfactuals, ...

1



Computation in economics II

• Computation helps, complements, and extends economic and econometric

theory. Judd (1997).

• Economics is not different from other fields (if anything, economics has been

slow to embrace computation).

• Widespread movement across all scientific and engineering fields: On

Computing by Paul S. Rosenbloom.

• Nowadays, computation in economics is also becoming key in:

1. Policy making institutions.

2. Regulatory agencies.

3. Industry.

2



Past, present, and future

• Move towards computation started already in the 1950s (estimation of

simultaneous equations models, simple static GE models, ...).

• But it gathered speed after the 1980s (RBC research program, first-generation

simulation estimators, structural estimation, interest rate models, ...).

• Most likely, the computational trend will increase over time:

1. Drop in computing costs.

2. Big data.

3. Machine learning and AI.

4. Change in composition of the profession.

3



Consequences for students

• This means that you will spend a substantial share of your professional career:

1. Coding.

2. Dealing with coauthors and research assistants that code.

3. Reading and evaluating computational papers.

4. Supervising/regulating people using computational methods.

• You want to lay solid foundations for future: concrete tools will change,

fundamental ideas will not.

4



High-performance computing

• High-performance computing (HPC) deals with scientific problems that require

substantial computational power.

• Even simple problems in economics generate HPC challenges:

1. Dynamic programing with several state variables.

2. Highly non-linear DSGE models with many shocks.

3. Problems with occasionally binding constraints.

4. Complex asset pricing.

5. Structural estimation.

6. Frontier estimators without close-forms formulae.

7. Handling large datasets.

5



Parallel processing

• Usually, but not always, HPC involves the use of several processors:

1. Multi-core/many-core CPUs (in a single machine or networked).

2. Many-core coprocessors.

3. GPUs (graphics processing units).

4. TPUs (tensor processing units).

5. FPGAs (field-programmable gate arrays).

• Most of these machines are available to all researchers at low prices.

• Nevertheless, we will also think about how to produce efficient serial code

(although, following most recent developments, we will not emphasize much

vectorization).

6



Parallel paradigms8 � Understanding the need for parallel computing

▼�✁✂✄☎✆✝✞✟✠✡☛☞✌☎✆✝✞✟

❈✍✎

▼☛☞✌☎✆✝✞✟

■☞✂✟✁ ✏✟✝☞ ✍✑✄

✆✝❝✞✝✆✟✒✒✝✞

●✍✎

✸ ✻

❖❝✟☞▼✍ ✺

❖❝✟☞▼✍

◆✝✓✟

✭✆✝✡❝�✂✟✞✠✔✝✞✕✒✂☛✂✄✝☞✠✒✟✞✖✟✞✗

▼✍■

✶

✹

▼✍■

▼✍■

✷

❖❝✟☞▼✍

✼

❈✎✘✙

✽

✾

❖❝✟☞✙❈❈
❖❝✟☞❈✚

FIGURE 1.2 Typical usage of APIs for parallel programs on specific com-

puting devices/architectures (other configurations might be possible

depending on particular compilers/software)

4. CUDA for writing parallel multithreaded programs running on NVIDIA
GPUs.

5. OpenCL for writing parallel multithreaded programs running on multi-
core CPUs and/or GPUs.

6. OpenACC for writing parallel multithreaded programs running on ac-
celerators such as GPUs.

7



GPUs

8



Coprocessor

9



TPUs

10



Total time

• Often HPC is framed regarding running time.

• In practice, coding and debugging time is likely to be more relevant than

running time.

• We will spend considerable effort in discussing proper coding.

• Savings in development time are often first-order. Savings in running time are

most times second-order.

Adapted from Gen. Robert H. Barrow, USMC (27th Commandant of the

US Marine Corps)

Amateurs talk about the speed of their processors, but professionals study coding

techniques.

11



Some resources

• HPC carpentry: https://hpc-carpentry.github.io/.

• Victor Eijkhout’s homepage:

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html.

• Livermore documentation and tutorials: https://hpc.llnl.gov/training/.

• A curriculum: https://grid.cs.gsu.edu/~tcpp/curriculum/?q=home.

• HPC Wire: https://www.hpcwire.com/.

• Inside HPC: https://insidehpc.com/.

• High Performance Computing: Modern Systems and Practices by Thomas

Sterling, Matthew Anderson, and Maciej Brodowicz.

• Introduction to High Performance Computing for Scientists and Engineers by

Georg Hager and Gerhard Wellein.
12

https://hpc-carpentry.github.io/
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://hpc.llnl.gov/training/
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=home
https://www.hpcwire.com/
https://insidehpc.com/


Other material

• This set of notes does NOT cover:

1. Theory of computation and complexity theory.

2. Automata theory.

3. Computer architecture.

4. Computer arithmetic.

5. Numerical analysis.

6. Solution, estimation, and parallelization algorithms applied to economics.

7. LATEXand BibTEX.

13


