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Motivation



Why parallel?

• Moore’s Law (1965): transistor density of semiconductor chips would double
roughly every 18 months.

• Problems when transistor size falls by a factor x :

1. Electricity consumption goes up by x4.

2. Heat goes up.

3. Manufacturing costs go up.

• Inherent limits on serial machines imposed by the speed of light (30 cm/ns)
and transmission limit of copper wire (9 cm/ns): virtually impossible to build a
serial Teraflop machine with current approach.

• Furthermore, real bottleneck is often memory access (RAM latency has only
improved around 10% a year).

• Alternative: having more processors!
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Cray-1, 1975
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IBM Summit, 2018
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Parallel programming

• Main idea ⇒ divide a complex problem into easier parts:

1. Numerical computation =⇒ matrix multiplication.

2. Data handling (MapReduce and Spark) =⇒ computing moments.

• Two issues:

1. Algorithms.

2. Coding.
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Some references

• Introduction to High Performance Computing for Scientists and Engineers by
Georg Hager and Gerhard Wellein.

• Parallel Computing for Data Science: With Examples in R, C++ and CUDA,
by Norman Matloff.

• Parallel Programming: Concepts and Practice by Bertil Schmidt, Jorge
González-Domínguez, and Christian Hundt.

• An Introduction to Parallel Programming by Peter Pacheco.

• Principles of Parallel Programming by Calvin Lin and Larry Snyder.

• Structured Parallel Programming: Patterns for Efficient Computation by
Michael McCool, James Reinders, and Arch Robison.
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When do we parallelize? I

• Scalability:

1. Strongly scalable: problems that are inherently easy to parallelize.

2. Weakly scalable: problems that are not.

• Granularity:

1. Coarse: more computation than communication.

2. Fine: more communication.

• Overheads and load balancing.
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Granularity
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When do we parallelize? II

• Whether or not the problem is easy to parallelize may depend on the way you
set it up.

• Taking advantage of your architecture.

• Trade off between speed up and coding time.

• Debugging and profiling may be challenging.

• You will need a good IDE, debugger, and profiler.
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Example I: value function iteration

V (k) = max
k′
{u (c) + βV (k ′)}

c = kα + (1− δ) k − k ′

1. We have a grid of capital with 100 points, k ∈ [k1, k2, ..., k100] .

2. We have a current guess V n (k) .

3. We can send the problem:

max
k′
{u (c) + βV n (k ′)}

c = kα1 + (1− δ) k1 − k ′

to processor 1 to get V n+1 (k1) .

4. We can send similar problem for each k to each processor.
5. When all processors are done, we gather the V n+1 (k1) back.
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Example II: random walk Metropolis-Hastings

• Draw θ ∼ P (·)
• How?

1. Given a state of the chain θn−1, we generate a proposal:

θ∗ = θn−1 + λε, ε ∼ N (0, 1)

2. We compute:

α = min

{
1,

P (θ∗)

P (θn−1)

}
3. We set:

θn = θ∗ w .p. α

θn = θn−1 w .p. 1− α

• Problem: to generate θ∗ we need to θn−1.
• No obvious fix (parallel chains violate the asymptotic properties of the chain).
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The Model



Life-cycle model

• Households solve:

V (t, e, x) = max
{c,x′}

c1−σ

1− σ
+ βEV (t + 1, e′, x ′)

s.t.

c + x ′ ≤ (1 + r)x + ew

P(e′|e) = Γ(e)

x ′ ≥ 0

t ∈ {1, . . . ,T}
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Computing the model

1. Choose grids for assets X = {x1, . . . , xnx} and shocks E = {e1, . . . , ene}.

2. Backwards induction:

2.1 For t = T and every xi ∈ X and ej ∈ E , solve the static problem:

V (t, ej , xi ) = max
{c}

u(c) s.t. c ≤ (1 + r)xi + ejw

2.2 For t = T − 1, . . . , 1, use V (t + 1, ej , xi ) to solve:

V (t, ej , xi ) = max
{c,x′∈X}

u(c) + βEV (t + 1, e′, x ′) s.t.

c + x ′ ≤ (1 + r)xi + ejw

P(e′ ∈ E |ej) = Γ(ej)
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Code Structure

for(age = T:-1:1)
for(ix = 1:nx)
for(ie = 1:ne)
VV = -10^3;
for(ixp = 1:nx)

expected = 0.0;
if(age < T)
for(iep = 1:ne)
expected = expected + P[ie, iep]*V[age+1, ixp, iep];

end
end

cons = (1+r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;

if(cons <= 0)
utility = -10^5;

end
if(utility >= VV)
VV = utility;

end
end
V[age, ix, ie] = VV;

end
end

end
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In parallel

1. Set t = T .

2. Given t, the computation of V (t, ej , xi ) is independent of the computation of
V (t, ej′ , xi ′), for i 6= i ′, j 6= j ′.

3. One processor can compute V (t, ej , xi ) while another processor computes
V (t, ej′ , xi ′).

4. When the different processors are done at computing V (t, ej , xi ), ∀xi ∈ X and
∀ej ∈ E , set t = t − 1.

5. Go to 1.

Note that the problem is not parallelizable on t. The computation of V (t, e, x)

depends on V (t + 1, e, x)!

15



Computational features of the model

1. The simplest life-cycle model.

2. Three state variables:

2.1 Age.

2.2 Assets.

2.3 Productivity shock.

3. Parallelizable only on assets and shock, not on age.

4. May become infeasible to estimate:

4.1 With more state variables:

• Health.

• Housing.

• Money.

• Different assets.

4.2 If embedded in a general equilibrium.
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In parallel
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Parallel execution of the code
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Many workers instead of one

Figure 1: 1 Core Used for Computation

Figure 2: 8 Cores Used for Computation
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Parallelization limits
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Costs of parallelization

• Amdahl’s Law: the speedup of a program using multiple processors in parallel
computing is limited by the time needed for the sequential fraction of the
program.

• Costs:

• Starting a thread or a process/worker.

• Transferring shared data to workers.

• Synchronizing.

• Load imbalance: for large machines, it is often difficult to use more than 10%
of its computing power.
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Parallelization limits on a laptop

• Newest processors have plenty of processor.

• For example, for the examples in these slides, we used 4 physical cores + 4
virtual cores = 8 logical cores.

22



Multi-core processors
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Know your limits!

• Spend some time getting to know you laptop’s limits and the problem to
parallelize.

• In our life-cycle problem with many grid points, parallelization improves
performance almost linearly, up to the number of physical cores.

• Parallelizing over different threads of the same physical core does not improve
speed if each thread uses 100% of core capacity.

• For computationally heavy problems, adding more threads than cores available
may even reduce performance.
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Your laptop is not the limit!

• Cluster servers.

• Amazon Web Services - EC2 at https://aws.amazon.com/ec2/:

• Almost as big as you want!

• Replace a large initial capital cost for a variable cost (use-as-needed).

• Check: https://aws.amazon.com/ec2/pricing/

• 8 processors with 32Gb, general purpose: $0.332 per hour.

• 64 processors with 256Gb, compute optimized: $3.20 per hour.
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Running an instance on AWS

• Go to: https://console.aws.amazon.com/

• Click on EC2.

• Click on Launch Instance and follow the window links (for example, Ubuntu
Server 18.04).

• Public key:

• Create a new key pair.

• Download key.

• Store it in a secure place (usually ∼./ssh/).

• Run instance.

26
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Working on AWS instance

On Unix/Linux terminal:

• Transfer folder from local to instance with scp:

$ scp -i "/path/"Harvard_Spring_2018.pem"" -r "/pathfrom/FOLDER/"
ec2-user@ec2-34-226-147-93.compute-1.amazonaws.com:~

• Make sure key is not publicly available:

$ chmod 400 "Harvard_Spring_2018.pem"

• Connect to instance with ssh:

$ ssh -i "Harvard_Spring_2018.pem"
ec2-user@ec2-34-226-147-93.compute-1.amazonaws.com

27



Parallelization



Programming modes I

• More common in economics.

1. Packages/libraries/toolboxes within languages:

1.1 Julia.

1.2 Python.

1.3 R.

1.4 Matlab.

2. Explicit parallelization:

2.1 OpenMP.

2.2 MPI.

2.3 GPU programming: CUDA, OpenCL, and OpenACC.
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Programming modes II

• Less common in economics.

1. Automatic parallelization: AutoParInGCC, Intel compilers.

2. Partitioned Global Address Space Languages (PGAS):

2.1 Coarray Fortran.

2.2 UPC.

2.3 X10.

2.4 Chapel.

3. Pthreads (POSIX threads).

4. TPUs (Tensor processing units).

5. FPGAs (field programmable gate arrays).

6. Hybrids.

29



Flynn’s taxonomy
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Two ways of parallelizing

1. for loop:

• Adding a statement before a for loop that wants to be parallelized.

2. Map and reduce:

• Create a function that depends on the state variables over which the problem
can be parallelized:

• In our example, we have to create a function that computes the value function for
a given set of state variables.

• Map computes in parallel the function at a vector of states.

• Reduce combines the values returned by map in the desired way.
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Julia



Parallelization in Julia - for loops

• Parallelization of for loops is worth for “small tasks.”

• “Small task” == “few computations on each parallel iteration”:

• Few control variables.

• Few grid points on control variables.

• Our model is a “small task.”
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Parallelization in Julia - for loops

1. Load distributed module

using Distributed

2. Set number of workers:

addprocs(5)

3. Remove workers:

rmprocs(2,3,5)

4. Checking workers:

workers()
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Parallelization in Julia - for loops

1. Load distributed and SharedArrays modules

using Distributed
using SharedArrays

2. Declare variables used inside the parallel for loop that are not modified inside
parallel iterations to be @everywhere:

@everywhere nx = 1500;

3. Declare variables used inside the parallel for loop that are modified inside
parallel iterations as SharedArray:

tempV = SharedArray{Float64}(ne*nx);
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Parallelization in Julia - for loops

4. Data structure of state and exogenous variables

@everywhere struct modelState
ind::Int64
ne::Int64
nx::Int64
T::Int64
age::Int64
P::Array{Float64,2}
xgrid::Vector{Float64}
egrid::Vector{Float64}
ssigma::Float64
bbeta::Float64
V::Array{Float64,2}
w::Float64
r::Float64

end
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Parallelization in Julia - for loops

5. Define a function that computes value function for a given state:

@everywhere function value(currentState::modelState)

ind = currentState.ind
age = currentState.age

# ...
VV = -10.0^3;

ixpopt = 0;

for ixp = 1:nx
# ...

end

return(VV);

end
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Parallelization in Julia - for loops

6. For paralellizing a for loop, add @distributed before the for statement:

@distributed for ind = 1:(ne*nx)
# ...

end

7. To synchronize before the code continues its execution, add @sync before the
@distributed for statement:

@sync @distributed for ind = 1:(ne*nx)
# ...

end
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Parallelization in Julia - for loops

• Choose appropriately the dimension(s) to parallelize:

nx = 350;
ne = 9;
for(ie = 1:ne)
@sync @distributed for(ix = 1:nx)
# ...

end
end

nx = 350;
ne = 9;
for(ix = 1:nx)
@sync @distributed for(ie = 1:ne)
# ...

end
end

• The first one is much faster, as there is less communication.
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Parallelization in Julia - for loops

• OR convert the problem so all state variables are computed by iterating over a
one-dimensional loop:

@sync @distributed for ind = 1:(ne*nx)

ix = convert(Int,ceil(ind/ne));
ie = convert(Int,floor(mod(ind-0.05, ne))+1);

# ...

end

• Communication time is minimized!
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Parallelization in Julia - Performance

Figure 3: Julia - 1 core used for computation

Figure 4: Julia - 8 cores used for computation
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Parallelization in Julia - Performance
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Parallelization in Julia - for loops

• Speed decreases with the number of global variables used.

• Very sensible to the use of large SharedArray objects.

• Can be faster without paralellization than with large shared objects.

• See code on github
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Parallelization in Julia - Map

• Problems with more computations per iteration.

• Value function/life-cycle models with more computations per state:

• Many control variables.

• Discrete choice (marry-not marry, accept-reject work offer, default-repay, etc.).

• If problem is “small”, using map for parallelization is slower.

• See examples 3 and 4 on github.
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Parallelization in Julia - Map

1. Most of the code as as in the for case.

2. The function pmap(f,s) computes the function f at every element of s in
parallel:

for(age = T:-1:1)
pars = [modelState(ix, age, ..., w, r) for ix in 1:nx];
s = pmap(value,pars);
for(ind = 1:nx)

V[age, ix, ie] = s[ix];
end

end
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Parallelization in Julia - Performance
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Parallelization in Julia - Final advice

• Assess size of problem, but usually problem grows as paper evolves!

• Wrapping value function computation for every state might significantly
increase speed (even more than parallelizing).
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Python



Parallelization in Python - Map

1. Use joblib package

from joblib import Parallel, delayed
import multiprocessing

2. Define a parameter structure for value function computation:

class modelState(object):
def __init__(self, age, ix, ...):

self.age = age
self.ix = ix
# ...

47



Parallelization in Python

3. Define a function that computes value for a given input states of type
modelState:

def value_func(states):
nx = states.nx
age = states.age
# ...
VV = math.pow(-10, 3)
for ixp in range(0,nx):

# ...
return[VV];

48



Parallelization in Python

4. The function Parallel:

results = Parallel(n_jobs=num_cores)(delayed(value_func)
(modelState(ix, age, ..., w, r)) for ind in range(0,nx*ne))

maps the function value_func at every element of modelState(ix, age,
. . . , w, r) in parallel using num_cores cores.
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Parallelization in Python

5. Life-cycle model:

for age in reversed(range(0,T)):
results = Parallel(n_jobs=num_cores)(delayed(value_func)

(modelState(ix, age, ..., w, r)) for ix in range(0,nx))
for ix in range(0,nx):

V[age, ix] = results[ix][0];
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Parallelization in Python - Performance
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R



Parallelization in R - Map

1. Use package parallel:

library("parallel")

2. Create the structure of parameters for the function that computes the value for
a given state as a list:

states = lapply(1:nx, function(x) list(age=age,ix=x, ...,r=r))
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Parallelization in R

3. Create the function that computes the value for a given state:

value = function(x){
age = x$age
ix = x$ix
...
VV = -10^3;
for(ixp in 1:nx){

# ...
}
return(VV);

}
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Parallelization in R

4. Define the cluster with desired number of cores:

cl <- makeCluster(no_cores)

5. Use function parLapply(cl, states, value) to compute value at every
state in states with cl cores:

for(age in T:1){
states = lapply(1:nx, ...)
for(ix in 1:nx){
V[age, ix] = s[[ix]][1]

}
}
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Parallelization in R - Performance
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Matlab



Parallelization in Matlab - for loop

Using the parallel toolbox:

1. Initialize number of workers with parpool():

parpool(6)

2. Replace the for loop with parfor:

for age = T:-1:1
parfor ie = 1:1:ne

% ...
end

end
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Parallelization in Matlab - Performance
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Parallelization in Matlab

• Extremely easy.

• Also simple to extend to GPU.

• There is no free lunch =⇒ very poor performance.
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OpenMP



OpenMP I

• Open specifications for multi-processing.

• It has been around for two decades. Current version 4.5.

• Official web page: http://openmp.org/wp/

• Tutorial: https://computing.llnl.gov/tutorials/openMP/

• Using OpenMP: Portable Shared Memory Parallel Programming by Barbara
Chapman, Gabriele Jost, and Ruud van der Pas.

• Fast to learn, reduced set of instructions, easy to code, but you need to worry
about contention and cache coherence.

59
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OpenMP II

• API for multi-processor/core, shared memory machines defined by a group of
major computer hardware and software vendors.

• C++ and Fortran. Extensions to other languages.

• For example, you can have OpenMP in Mex files in Matlab.

• Supported by major compilers (GCC) and IDEs (Clion).

• Thus, it is usually straightforward to start working with it.
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OpenMP III

• Multithreading with fork-join.

• Rule of thumb: One thread per processor.

• Job of the user to remove dependencies and syncronize data.

• Heap and stack (LIFO).

• Race conditions: you can impose fence conditions and/or make some data
private to the thread.

• Remember: synchronization is expensive and loops suffer from overheads.
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Fork-join
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Parallelization in C++ using OpenMP

1. At compilation, add flag:

-fopenmp

2. Set environmental variable OMP_NUM_THREADS:

export OMP_NUM_THREADS=32

3. Add line before loop:

#pragma omp parallel for shared(V, ...) private(VV, ...)
for(int ix=0; ix<nx; ix++){

// ...
}

4. We can always recompile without the flag and compiler directives are ignored.

5. Most implementations (although not the standard!) allow for nested
parallelization and dynamic thread changes. 63



Parallelization in C++ using OpenMP - Performance
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Parallelization in Rcpp using OpenMP

1. Write your code in C++, adding the parallelization statement

#pragma omp parallel for shared(...) private(...)

2. In the C++ code, add the following line to any function that you want to
import from R:

// [[Rcpp::export]]

3. In R, load the Rcpp package:

library("Rcpp")
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Parallelization in Rcpp using OpenMP

4. Set the environmental variable OMP_NUM_THREADS using the Sys.setenv()
function:

Sys.setenv("OMP_NUM_THREADS"="8")

5. Add the −fopenmp flag using Sys.setenv() function:

Sys.setenv("PKG_CXXFLAGS"=" -fopenmp")

6. Compile and import using sourceCpp:

sourceCpp("my_file.cpp")

66



MPI



MPI I

• Message Passing Interface (MPI) is a standardized and portable
message-passing system based on the consensus of the MPI Forum.

• Official web page (and for downloads): http://www.open-mpi.org/

• Tutorial: https://computing.llnl.gov/tutorials/mpi/

• A couple of references:

1. Using MPI : Portable Parallel Programming with the Message Passing Interface
(2nd edition) by William Gropp, Ewing L. Lusk, and Anthony Skjellum.

2. MPI: The Complete Reference - Volumes 1 and 2, by several authors.

67

http://www.open-mpi.org/
https://computing.llnl.gov/tutorials/mpi/


MPI II

• MPI is organized as a library performed with routine calls.

• Bindings for C++ and Fortran. Also for Python, Julia, R, and other
languages.

• For example, you can have MPI in Mex files in Matlab.

• Harder to learn (MPI 3.0 standard has more than 440 routines) and code, but
extremely powerful ⇒ used for state-of-the-art computations.

• Multiple processes (thread with its own controller).

• Thus, better for coarse parallelization.
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1

Send mα

Receive mγ

2

Receive mα

3

Send mβ

Send mγ

4

Receive mβ

Figure 16: MPI computing

In particular, MPI can broadcast (transfers an array from the master to every thread),
scatter (transfers different parts of an array from the master node to every thread; note the
difference with broadcasting), and gather information (transfers an array from each of the
threads to a single array in the master node). Figure 17 illustrates the ideas of broadcasting,
scattering, and gathering of information among workers.

Figure 17: MPI Functions

48

69



Figure 18: MPI synchronization with barrier function

int tid, nthreads;

MPI_Comm_rank(MPI_COMM_WORLD, &tid)

MPI_Comm_size(MPI_COMM_WORLD, &nthreads)

Next, we define the portion of state space that each thread must execute, according to
the thread id, tid:

int loop_min = (int)(tid * ceil((float) nx*ne/nthreads))

int loop_max = (int)((tid+1) * ceil((float) nx*ne/nthreads))

The MPI_Bcast function instructs the master thread to send copies of the same informa-
tion to every worker in the parallel pool. In our model, at every iteration t, we need the
master thread to send a copy of the value function at t+1. For this reason, we must employ
the MPI_Bcast function at the beginning of the loop:

MPI_Bcast(Value, T*ne*nx, MPI_FLOAT, 0, MPI_COMM_WORLD);

Given that every thread will execute the same task, each one for a different portion of
the state space, we must make this explicit on the for:
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MPI III

• Invoked with a compiler wrapper

mpic++ -o ClassMPI ClassMPI.cpp

• Plenty of libraries (PLAPACK, Boost.MPI).

• Parallel I/O features.
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Example code

#include "mpi.h"
#include <iostream>
int main( int argc, char *argv[] ){

int rank, size;
MPI::Init(argc, argv);
rank = MPI::COMM\_WORLD.Get\_rank();
size = MPI::COMM\_WORLD.Get\_size();
std::cout<< "I am " << rank << " of " << size << \qquad "n";
MPI::Finalize();
return 0;
}
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Routines

• Communication:

1. Send and receive: between two processors.

2. Broadcast, scatter, and gather data on all processors.

3. Compute and move (sum, product, max of, . . . ) data on many processors.

• Synchronization.

• Enquiries:

1. How many processes?

2. Which process is this one?

3. Are all messages here?
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MPI derived types

• MPI predefines its primitive data types:

1. MPI_CHAR

2. MPI_DOUBLE_PRECISION

3. MPI_C_DOUBLE_COMPLEX

• Also for structs and vectors.

• Particularly important for top performance.
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Parallelization in C++ using MPI - Performance
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Big difference

• Latency: amount of time required to complete a unit of work.

• Throughput: amount of work completed per unit of time.

• Latency devices: CPU cores.

• Throughput devices: GPU cores.

• Intermediate: Coprocessors.

• Nature of your application?
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Floating-point operations per second for the CPU and GPU
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When to go to the GPU?

1. Problem is easily scalable because computation is massively parallel.

2. Much more time spent on computation than on communication.

Remember: a GPU is attached to the CPU via a PCI (Peripheral Component
Interconnect) Express bus.

81



CUDA, OpenCL, and OpenACC

• Three approaches to code in the GPU:

1. CUDA (Compute Unified Device Architecture):

2. OpenCL (Open Computing Language).

3. OpenACC.

• Also, using some of the packages/libraries of languages such as R or Matlab.
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CUDA

• CUDA (ComputeUnifiedDeviceArchitecture) was created by Nvidia to facilitate
GPU programming.

• It is based on C/C++ with a set of extensions to enable heterogenous
programing.

• Introduced in 2007, it is being actively developed (current version 10).

• Many toolboxes: cuBlas, curand, cuSparse, thrust.

• It can be access from other languages such as Fortran, Matlab, Python.

• Widely used in data mining, computer vision, medical imaging, bio-informatics.
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CUDA: advantages

• Massive acceleration for parallelizable problems.

• Brings C++11, since version 7, and C++14, since version 9, language features,
albeit only a subset available in Device.

• Fast shared memory that can be accessed by threads.

• Rapidly expanding third-party libraries: OpenCV machine learning, CULA linear
algebra, HIPLAR linear algebra for R.

• Enter Thrust:

1. Library of parallel algorithms and data structures.

2. Flexible, high-level interface for GPU programming.

3. A few lines of code to perform GPU-accelerated sort, scan, transform, and
reduction operations
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Example code

// Functions to be executed only from GPU
__device__ float utility(float consumption, float

ssigma){
float utility = pow(cons, 1-ssigma) / (1-ssigma);
// ...
return(utility);

}
// Functions to be executed from CPU and GPU
__global__ float value(parameters params, float* V,

...){
// ...

}
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CUDA: disadvantages

• Runs only in Nvidia devices.

• High startup cost. Tricky to program even for experienced programmers.

• Tracking host and device codes.

• Demands knowledge of architecture: grid, blocks, threats. Memory
management.

• Copying between host and device may reduce speed gains.

• Not all applications benefit from parallelization.

• Limited community, most information comes from Nvidia and third-party
developers.
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Additional resources

Some additional books and references for CUDA programming.

• Books:

1. CUDA by Example, by Jason Sanders and Edward Kandrot.

2. CUDA C Programming, by John Cheng, Max Grossman, and Ty McKercher.

• References:

1. https://developer.nvidia.com/cuda-zone.

2. https://developer.nvidia.com/thrust.

3. https://devblogs.nvidia.com/
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Thrust



Thrust I

• Thrust brings the power of GPUs to the masses (at least those familiar with
C++).

• Thrust is a parallel algorithms library in the spirit of C++’s Standard Template
Library.

• Thrust’s main goal is to solve problems that

1. “can be implemented efficiently without a detailed mapping to the target
architecture,” and

2. “don’t merit or won’t receive (for whatever reason) significant optimization
attention from the programmer.”

• The idea is that the programmer spends more time on the problem, rather than
on the implementation of the algorithms solving the problem.
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Thrust II

• Low-level costumization and easy interaction with CUDA, OpenMP, or TBB.1

• Thrust has two main features.

1. An STL-style vector container for host and device, and

2. A set of high-level algorithms for copying, merging, sorting, transforming.

• Thrust can be used for parallel computing for multicore CPUs.

• Thrust incorporates tuned implementation for each backend: CUDA, OpenMP,
and TBB

• This results in portability across parallel frameworks and hardware architecture
without losing performance.

1Intel’s TBB – Threading Building Blocks – is a C++ template library for task parallelism.

90



Thrust III

• Of course, Thrust has limitations.

• No multidimensional data structures libraries.

• Thrust is “entirely defined in header files.” Hence, each modification in code
requires recompilation.

• Thrust is not for situations in which performance, customization are crucial.

• Documentation is limited and mostly based on examples. But it has improved
over the years.

• Although the last release, version 1.8.1, dates back to 2015, Nvidia seems to be
working on an update.2

2https://www.reddit.com/r/cpp/comments/7erub1/anybody_still_using_thrust/
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Example code

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <algorithm>
#include <cstdlib>

int main(void){
// generate random data serially
thrust::host_vector<int> h_vec(100);
std::generate(h_vec.begin(), h_vec.end(), rand);
// transfer to device and compute sum
thrust::device_vector<int> d_vec= h_vec;
int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0,

thrust::plus<int>());
return 0;
}
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Thrust IV

• Let’s take a more detailed peek at some of Thrust’s capabilities.

• Thrust provides two vector containers:

1. host_vector stored in the CPU’s memory

thrust::host_vector<int> hexample(10,1) // host vector with 10 elements set
to 1

2. device_vector resides in the GPU’s device memory.

thrust::device_vector<int> dexample(hexample.begin(),hexample.begin()+5)
// device vector with first 5 elements of hexample

• Some algorithms that operate on vectors are: thrust::fill(), thrust::copy(),
thrust::sequence().

• Last algorithm creates a sequence of equally spaced values.
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Thrust V – Algorithms

• Transformations are “algorithms that apply an operation to each element in a
set of input ranges and stores result in destination range.”

• Compute Y = −X :

thrust::transform(X.begin(), X.end(), Y.begin(), thrust::negate<int>());

• Compute Y = Xmod2

thrust::transform(X.begin(), X.end(), Z.begin(), Y.begin(),
thrust::modulus<int>());
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Thrust V – Algorithms

• Reduction uses “a binary operation to reduce an input sequence to a single
value.”

• Sum elements in device vector Y :

int sum = thrust::reduce(Y.begin(), Y.end(), (int) 0, thrust::plus<int>());

• Thrust includes other reduction operations:

1. thrust::count number of instances of specific value,

2. thrust::min_element // find minimum in vector,

3. thrust::max_element,,

4. thrust::inner_product,,
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Thrust VI – Algorithms

• Thrust offers many more algorithms to, for example, reordering, sorting, and
prefix-sums.

• Another important feature in thrust is the fancy iterators.

1. thrust::constant_iterator< > iterator returns same value when dereference it,

2. transform_iterator,

3. permutation_iterator fuse, gather, and scatter operations with thrust
algorithms,

4. zip_iterator takes multiple input sequences and yields a sequence of tuples.

zip_iterator can be used to create “a virtual array of 3d vectors” that can be fed
to other algorithms.
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Additional resources

Some books and references for thrust programming.

• Books:

1. Sorry! No books that we are aware of.

• References:

1. https:
//devblogs.nvidia.com/expressive-algorithmic-programming-thrust/.

2. https://github.com/thrust/thrust/wiki/Quick-Start-Guide.

3. http://thrust.github.io/.

4. https://docs.nvidia.com/cuda/thrust/index.html

97

https://devblogs.nvidia.com/expressive-algorithmic-programming-thrust/
https://devblogs.nvidia.com/expressive-algorithmic-programming-thrust/
https://github.com/thrust/thrust/wiki/Quick-Start-Guide
http://thrust.github.io/
https://docs.nvidia.com/cuda/thrust/index.html


OpenACC



OpenACC I

• Like Thrust, OpenACC tries to bring heterogenous HPC to the masses.

• Its motto is “More Science, Less Programming.”

• OpenACC is a “user-driven directive-based performance-portable parallel
programming model.”

• Main idea is to take existing serial code, say C++, and give hints to compiler to
what should be parallelized.

• OpenACC is a model designed to allow parallel programming across different
computer architectures with minimum effort by the developer. Portability
means that the code should be independent of hardware/compiler.

• OpenACC specification supports C/C++ and Fortran and runs in CPUs and
GPUs.
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OpenACC II

• OpenACC is built around a very simple set of directives, very similar in design to
OpenMP: OpenACC uses the fork-join paradigm.

• The same program can be compiled to be executed in parallel using the CPU or
the GPU (or mixing them), depending on the hardware available.

• Communication between the master and worker threads in the parallel pool is
automatically handled, although the user can state directives to grant explicit
access to variables, and to transfer objects from the CPU to the GPU when
required.

• The OpenACC website describes multiple compilers, profilers, and debuggers for
OpenACC.

• We use the PGI Community Edition compiler. The PGI compiler can be used
with the CPUs and with NVIDIA Tesla GPUs. In this way, it suffices to select
different flags at compilation time to execute the code in the CPU or the GPU.

99

https://www.openacc.org/tools


Using OpenACC I: Analyze

• Use a profiler to check where your code spends lots of time. Example of
bottlenecks are loops.

• Check if there is an optimized library that implements some of your code:
cuBlas, Armadillo.
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Using OpenACC II: Parallelize

• Expose your code to parallelism starting with functions/operations that are
time consuming on CPU.

• To initiate parallel execution:

# pragma acc parallel

• To execute a kernel:

# pragma acc parallel kernel

• To parellelize a loop:

# pragma acc parallel for
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Example

• Example code of parallelizing a loop in C++.

• Basic parallel loop:

#pragma acc parallel loop
for(int ix=0; ix<nx; ix++){

// ...
}

• Ensuring copy of relevant objects:

#pragma acc data copy(...)
#pragma acc parallel loop
for(int ix = 0; ix<nx; ix++){

//...
}
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Example code II

• By choosing the appropriate compilation flag, we can compile the code to be
executed in parallel only in the CPU or in the GPU.

• To compile the code to be executed by the CPU, we must include the
-ta=multicore flag at compilation. In addition, the -acc flag must be added
to tell the compiler this is OpenACC code:

pgc++ Cpp_main_OpenACC.cpp -o Cpp_main -acc
-ta=multicore

• If, instead, we want to execute the program with an NVIDIA GPU, we rely on
the -ta=nvidia flag:

pgc++ Cpp_main_OpenACC.cpp -o Cpp_main -acc
-ta=nvidia
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Using OpenACC III: Optimize

• Give info to compiler of parts that can be optimize: data management
(minimize copying between host and device).

• Instruct compiler how to parallelize loops.

• Step 3 is not trivial and maybe involved, limiting OpenACC’s applicability.
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Additional resources

Some books and references for OpenACC programming.

• Books:

1. OpenACC Programming and Best Practices Guide, 2015.

• References:

1. https://devblogs.nvidia.com/tag/openacc/.

2. https://www.openacc.org/.
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Comparisons



Comparisons I

• All results are specific to our life-cycle model example.

• There are other ways to improve speed on each language:

• Function wrapping in Julia.

• Vectorizing in Matlab.

• Etc.
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Comparisons II

• The comparisons regarding parallelization are specific to the packages used on
these slides:

Community Speed Parallelization Time to Debug
Difficulty Improvement program

Matlab Large Medium Easy Low Fast Easy
Julia Very small Fast Medium High Fast Easy
R Large Slow Medium High Fast Easy
Python Large Slow Medium High Fast Easy
C++ Large Fast Easy High Slow Difficult
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Advice

• Short-run:
MATLAB, Python, Julia, or R

• Medium-run:
Rcpp

• Long-run:
C++ with OpenMP, MPI, or GPUs
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